Skip to main content
Log in

On the formation of TW Crv optical radiation

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We present the analysis of the optical radiation of the young pre-cataclysmic variable TW Crv. Spectroscopic and photometric observations were obtained at the SAO RAS 6-m BTA telescope and at the Russian-Turkish RTT-150 telescope. The light curves of the system posses nearly sinusoidal shapes with the amplitudes of Δ m > 0.m7, what is typical for young pre-cataclysmic variables with sdO-subdwarfs and orbit inclinations of less than 45◦. The optical spectrum contains dominant radiation of the hot subdwarf with the HI and He II absorption lines and strong emission lines, which are formed in the atmosphere of the secondary owing to the reflection effects. Radial velocities of the cool star were measured by analyzing the λλ 4630–4650 Å Bowen blend, which for the first time allowed to determine the component masses. A numerical simulation of the light curves and spectra of TW Crv, obtaining a complete set of systems fundamental parameters was carried out. The hot star parameters prompt its belonging to the sdOsubdwarf class at the stage of transition to the cooling white dwarf sequence. The absence of its observable planetary nebula is caused by a long-lasting evolution of the system after the common envelope state. The secondary component has a luminosity excess, which is typical for other young sdO-subdwarf precataclysmic variables. Its position on the “age−−luminosity excess” diagram points at the accuracy of the obtained set of TW Crv fundamental parameters and at the similarity of its evolutionary and physical conditions with that of other BE UMa-type objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Ritter, Astron. and Astrophys. 169, 139 (1986).

    ADS  Google Scholar 

  2. H. Ritter and U. Kolb, Astron. and Astrophys. 404, 301 (2010).

    Article  ADS  Google Scholar 

  3. V. V. Shimansky, N. V. Borisov, and N. N. Shimanskaya, Astronomy Reports 47, 763 (2003).

    Article  ADS  Google Scholar 

  4. M. R. Schreiber and B. T. Gänsicke, Astron. and Astrophys. 406, 305 (2003).

    Article  ADS  Google Scholar 

  5. V. V. Shimansky, S. A. Pozdnyakova, N. V. Borisov, et al., Astrophysical Bulletin 64, 349 (2009).

    Article  ADS  Google Scholar 

  6. V. V. Shimanskii, N. V. Borisov, N. A. Sakhibullin, and A. E. Surkov, Astronomy Reports 48, 563 (2004).

    Article  ADS  Google Scholar 

  7. N. N. Samus’, V. P. Goranskii, O. V. Durlevich, et al., Astronomy Letters 29, 468 (2003).

    Article  ADS  Google Scholar 

  8. R. M. Cutri, M. F. Skrutskie, S. van Dyk, et al., VizieR Online Data Catalog: II/246 (2003).

    Google Scholar 

  9. K. M. Exter, D. L. Pollacco, P. F. L. Maxted, et al., Monthly Notices Royal Astron. Soc. 359, 315 (2005).

    Article  ADS  Google Scholar 

  10. T. Ribeiro and R. Baptista, Astron. and Astrophys. 526, A150 (2011).

    Article  ADS  Google Scholar 

  11. A. Chen, D. O’Donoghue, R. S. Stobie, et al., Monthly Notices Royal Astron. Soc. 275, 100 (1995).

    Article  ADS  Google Scholar 

  12. V. V. Shimanskii, N. V. Borisov, S. A. Pozdnyakova, et al., Astronomy Reports 52, 558 (2008).

    Article  ADS  Google Scholar 

  13. V. V. Shimansky, N. V. Borisov, D. N. Nurtdinova, et al., Astronomy Reports 59, 199 (2015).

    Article  ADS  Google Scholar 

  14. V. L. Afanasiev and A. V. Moiseev, Astronomy Letters 31, 194 (2005).

    Article  ADS  Google Scholar 

  15. R. C. Bohlin, Astron. J. 111, 1743 (1996).

    Article  ADS  Google Scholar 

  16. J. L. Greenstein, Astrophys. J. 144, 496 (1966).

    Article  ADS  Google Scholar 

  17. R. C. Bohlin, ASP Conf. Ser. 364, 315 (2007).

    ADS  Google Scholar 

  18. M. K. Abubekerov, E. A. Antokhina, A. M. Cherepashchuk, and V. V. Shimanskii, Astronomy Reports 50, 544 (2006).

    Article  ADS  Google Scholar 

  19. V. V. Shimanskii, N. V. Borisov, N. A. Sakhibullin, and D. V. Sheveleva, Astronomy Reports 52, 479 (2008).

    Article  ADS  Google Scholar 

  20. N. A. Sakhibullin and V. V. Shimanskii, Astronomy Reports 41, 378 (1997).

    ADS  Google Scholar 

  21. N. A. Sakhibullin and V. V. Shimanskii, Astronomy Reports 40, 723 (1996).

    ADS  Google Scholar 

  22. D. V. Ivanova, N. A. Sakhibullin, and V. V. Shimanskii, Astronomy Reports 46, 390 (2002).

    Article  ADS  Google Scholar 

  23. F. Castelli and R. L. Kurucz, arXiv:astro-ph/0405087 (2004).

  24. V. F. Suleimanov, Astronomy Letters 22, 92 (1996).

    ADS  Google Scholar 

  25. R. L. Kurucz, Mem. Soc. Astron. Ital. Suppl. 8, 14 (2005).

    ADS  Google Scholar 

  26. V. F. Suleymanov, Astron. Astrophys. Trans. 2, 197 (1992).

    Article  ADS  Google Scholar 

  27. R. Kurucz, CD-ROM No. 20 (Smithsonian Astrophysical Observatory, Cambridge, 1994).

    Google Scholar 

  28. S. E. Naersisian, A. V. Shavrina, and A. A. Yaremchuk, Astrofizika 30, 147 (1989).

    ADS  Google Scholar 

  29. C. R. Vidal, J. Cooper, and E.W. Smith, Astrophys. J. Suppl. 25, 37 (1973).

    Article  ADS  Google Scholar 

  30. H. R. Griem, Astrophys. J. 132, 883 (1960).

    Article  ADS  Google Scholar 

  31. R. L. Kurucz and I. Furenlid, Special Report, No. 387 (Smithsonian Astrophysical Observatory, Cambridge, 1979).

    Google Scholar 

  32. A. Unsold, Physik der Sternatmospheren (Springer, Berlin–Gottingen–Heidelberg, 1955).

    Book  MATH  Google Scholar 

  33. N. N. Shimanskaya, I. F. Bikmaev, and V. V. Shimansky, Astrophysical Bulletin 66, 332 (2011).

    Article  ADS  Google Scholar 

  34. N. A. Sakhibullin, Trudy Kazansk. Gor. Astron. Obs. 48, 9 (1983).

    ADS  Google Scholar 

  35. V. V. Shimanskii, E. A. Karitskaya, N. G. Bochkarev, et al., Astronomy Reports 56, 741 (2012).

    Article  ADS  Google Scholar 

  36. E. Anders and N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  37. V. Straiżys, Multicolor stellar photometry. Photometric systems and methods (Mokslas Publisher, Vilnius, 1977).

    Google Scholar 

  38. A. A. Mitrofanova, V. V. Shimansky, N. V. Borisov, et al., Astronomy Reports 60, 252 (2016).

    Article  ADS  Google Scholar 

  39. A. C. Wawrzyn, T. S. Barman, H. M. Günther, et al., Astron. and Astrophys. 505, 227 (2009).

    Article  ADS  Google Scholar 

  40. D. H. Ferguson and T. A. James, Astrophys. J. Suppl. 94, 723 (1994).

    Article  ADS  Google Scholar 

  41. V. V. Shimansky, S. A. Pozdnyakova, N. V. Borisov, et al., Astronomy Letters 34, 423 (2008).

    Article  ADS  Google Scholar 

  42. T. Bloecker, Astron. and Astrophys. 299, 755 (1995).

    ADS  Google Scholar 

  43. L. Girardi, A. Bressan, G. Bertelli, and C. Chiosi, Astron. and Astrophys. Suppl. 141, 371 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Shimansky.

Additional information

Original Russian Text©V.V. Shimansky, A.A.Mitrofanova, N.V. Borisov, S.N. Fabrika, A.I. Galeev, 2016, published in Astrofizicheskii Byulleten’, 2016, Vol. 71, No. 4, pp. 497–509.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimansky, V.V., Mitrofanova, A.A., Borisov, N.V. et al. On the formation of TW Crv optical radiation. Astrophys. Bull. 71, 463–474 (2016). https://doi.org/10.1134/S199034131604009X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034131604009X

Keywords

Navigation