Skip to main content
Log in

Geochemistry and geochronology of the Proterozoic magmatic rocks of the Ulkan trough: New data

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

A model of the formation of the Ulkan trough was specified on the basis of new geochemical and geochronological data. The volcanics of the Ulkan Group exhibit geochemical features typical of the rocks of two modern geodynamic settings: suprasubduction and within-plate ones. The combination of the components derived from the different-depth sources in the magmatic chambers explains the formation of the volcanics with mixed geochemical signatures. The age of the granitoids of three phases of the Ulkan Massif is determined within the range of 1730–1925 Ga. The granites of the first and third phases have positive ɛNd(T) of + 3.5 and + 0.7, respectively. The granites of the first phase of the Ulkan Complex were likely derived from the Paleoproterozoic juvenile crust with an age of 1.84–1.95 Ga. The effusive rocks of the Ulkan Group were presumably formed in a geodynamic setting of a Cordilleran-type transform continental margin. Judging from the model TNd(DM) age, these geodynamic conditions operated >1.84 Ga ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Avchenko, I. A. Aleksandrov, V. O. Khudolozhkin, and M. A. Mishkin, “Fluid Regime of the Amphibolite-Facies Metamorphism in the Dzhugdzhur-Stanovoy Fold Area (Far East),” Tikhookean. Geol. 28(4), 3–15 (2009) [Russ. J. Pacif. Geol. 28, 307–318 (2009)].

    Google Scholar 

  2. I. A. Aleksandrov, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (DVGI DVO RAN, Vladivostok, 2008).

  3. A. Yu. Antonov, “Compositional Zoning of Quaternary Volcanism of the Kurile Island Arc and New Petrogenetic Implications,” Litosfera, No. 1, 22–44 (2006).

  4. Yu. A. Balashov, Isotopic-Geochemical Evolution of the Earths’ Mantle and Crust (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. A. K. Basharin, “Destructive Stage of the Tectonic Epoch in the Polycyclically Developing Regions,” in Structural Elements of the Earth’s Crust and Their Evolution (Nauka, Novosibirsk, 1983), pp. 60–82 [in Russian].

    Google Scholar 

  6. O. A. Bogatikov and A. A. Tsvetkov, Magmatic Evolution of Island Arcs (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  7. R. Bok, Methods of Decomposition in Analytical Chemistry (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  8. Ch. B. Borukaev, Precambrian Structures and Plate Tectonics (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  9. A. A. Bukharov, “Stages and Factors of Continental Growth in the East Siberia,” in Tectonics of Siberia (Nauka, Novosibirsk, 1983), Vol. 11, pp. 123–132 [in Russian].

    Google Scholar 

  10. Yu. N. Gamaleya, “Formation Analysis and Evolution of the Southeastern Part of the Siberian Platform in the Precambrian,” Geotektonika, No. 6, 35–45 (1968).

  11. V. A. Gur’yanov, Geology and Metallogeny of the Ulkan Region (Aldan-Stanovoy Shield) (Dal’nauka, Vladivostok, 2007) [in Russian].

    Google Scholar 

  12. A. N. Didenko, I. K. Kozakov, E. V. Babikova, et al., “Paleoproterozoic Granites of the Sharyzhalgai Block, Siberian Craton: Paleomagnetism and Geodynamic Inferences,” Dokl. Akad. Nauk 390(3), 368–373 (2003) [Dokl. Earth Sci. 390, 510–515 (2003)].

    Google Scholar 

  13. A. N. Didenko, V. Yu. Vodovozov, I. K. Kozakov, and E. V. Bibikova, “Paleomagnetic and Geochronological Study of Post-Collisional Early Proterozoic Granitoids of the Southern Siberian Platform: Methodical and Geodynamic Aspects,” Fiz. Zemli, No. 2, 66–83 (2005).

  14. A. N. Didenko, V. A. Gur’yanov, A. Yu. Peskov, et al., “Geochemistry, Geochronology, and Paleomagnetism of the Paleoproterozoic Complexes of the Ulkan Trough (Southeastern Aldan-Stanovoy Province),” in Proceedings of Conference on Gepdynamic Evolution of the Lithosphere of the Central-Asian Mobile Belt (from Ocean to Continent) (IZK SO RAN, Irkutsk, 2009), Vol. 1, pp. 90–91 [in Russian].

    Google Scholar 

  15. A. N. Didenko, V. A. Gur’yanov, V. S. Prikhod’ko, et al., “Paleoproterozoic Granites of the Ulkan Massif: Structural Position, Geochemistry, and Geodynamics,” in 6th Kosygin Readings. Tectonics and Deep Structure of East Asia, Khabarovsk, Russia, 2009 (ITiG DVO RAN, Khabarovsk, 2009), pp. 179–182 [in Russian].

    Google Scholar 

  16. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates on the USSR Territory (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  17. L. P. Karsakov and E. V. Bibikova, et al., “Regional Stratigraphic Scheme of the Lower Precambrian of the Aldan-Stanovoy Shield: State and Problem,” in Archean and Lower Proterozoic Stratigraphy of the USSR (UrO AN SSSR, Ufa, 1990), pp. 16–21 [in Russian].

    Google Scholar 

  18. V. I. Kovalenko, V. V. Yarmolyuk, A. M. Kozlovskii, and V. G. Ivanov, “Magmatic Sources of Alkaline Granitoids and Related Rocks from Intraplate Magmatic Associations in Central Asia,” Dokl. Akad. Nauk 377(5), 672–676 (2001) [Dokl. Earth Sci. 377, 354–358 (2001)].

    Google Scholar 

  19. A. A. Konstantinovskii, “The Ulkan and Bilyakchan Middle Proterozoic Grabens of the Southeastern Siberian Platform,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 72–84 (1974).

  20. A. M. Larin, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2008).

    Google Scholar 

  21. A. M. Leites and V. S. Fedorovskii, “Tectonics and Main Stages of Crustal Growth in the Southern Siberian Platform in the Early Precambrian,” in Basement Tectonics of the East European and Siberian Platforms (Nauka, Moscow, 1978), pp. 109–170 [in Russian].

    Google Scholar 

  22. A. M. Mazukabzov, D. P. Gladkochub, T. V. Donskaya, et al., “Evolution of the Southern Siberian Craton in the Precambrian,” Ed. by E. V. Sklyarov (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  23. P. G. Nedashkovskii and A. M. Lennikov, Petrology and Geochemistry of the Aldan Rapakivi (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  24. L. A. Neimark, A. M. Larin, S. Z. Yakovleva, and B. M. Gorokhovskii, “U-Pb Age of the Magmatic rocks of the Ulkan Graben, Southeastern Aldan Shield,” Dokl. Akad. Nauk 323(6), 1152–1156 (1992).

    Google Scholar 

  25. Yu. M. Puzankov, “Geochemical Characteristics of Cenozoic Basic Magmatism Related to Hotspot Activity,” Geokhimiya, No. 9, 941–949 (1999) [Geochem. Int. 37, 841–848 (1999)].

  26. O. M. Rosen, “The Siberian Craton: Tectonic Zonation and Stages of Evolution,” Geotektonika, No. 3, 3–21 (2003) [Geotectonics 37, 175–192 (2003)].

  27. O. M. Rosen, A. V. Manakov, and N. N. Zinchuk, Siberian Craton: Formation and Diamond Potential (Nauchnyi mir, Moscow, 2006) [in Russian].

    Google Scholar 

  28. L. I. Salop, General Stratigraphic Scale of the Precambrian. Periodization of the Precambrian Continents in the Northern Hemisphere and Main Features of the Early Stage of Geological Evolution (Nedra, Leningrad, 1973) [in Russian].

    Google Scholar 

  29. M. A. Semikhatov, “New Stratigraphic Scale of the Precambrian of the USSR: Analysis and Lessons,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 11, 5–22 (1979).

  30. V. P. Simanenko, V. V. Golozubov, and V. G. Sakhno, “Geochemistry of Volcanic Rocks from Transform Margins: Evidence from the Alchan Basin, Northwestern Primorie,” Geokhimiya, No. 12, 1251–1265 (2006) [Geochem. Int. 44, 1157–1169 (2006)].

  31. E. V. Sklyarov, D. P. Gladkochub, T. V. Donskaya, et al., Interpretation of Geochemical Data, Ed. by E. V. Sklyarov (Intermet Inzhiniring, Moscow, 2001) [in Russian].

    Google Scholar 

  32. A. P. Smelov and V. F. Timofeev, “Terrane Analysis and Geodynamic Model of the Formation of the North Asian Craton in the Early Precambrian,” Tikhookean. Geol. 22(6), 42–54 (2003).

    Google Scholar 

  33. N. I. Filatova and P. I. Fedorov, “Cenozoic Magmatism in the Korean-Japanese Region and Its Geodynamic Setting,” Geotektonika, No. 1, 54–77 (2003) [Geotectonics 37, 49–70 (2003)].

  34. V. E. Khain, Tectonics of Continents and Oceans (2000 Year) (Nauchnyi Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  35. A. I. Khanchuk, “Paleogeodynamic Analysis of the Formation of the Far East Ore Deposits,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2000), pp. 5–34 [in Russian].

    Google Scholar 

  36. A. A. Shchipansky, Subduction and Mantle-Plume Processes in the Geodynamics of the Archean Geenstone Belts (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  37. R. A. Batchelor and P. Bowden, “Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters,” Chem. Geol. 48, 43–55 (1985).

    Article  Google Scholar 

  38. M. T. Brandon, M. R. Roden-Tice, and J. I. Garver, “Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State,” Geol. Soc. Am. Bull. 100, 985–1009 (1998).

    Article  Google Scholar 

  39. H. De La Roche, J. Leterrier, P. Grandclaude, and M. Marchal, “A Classification of Volcanic and Plutonic Rocks Using R1R2-Diagram and Major Element Analyses—Its Relationships with Current Nomenclature,” Chem. Geol. 29, 183–210 (1980).

    Article  Google Scholar 

  40. A. N. Didenko and R. Forsythe, “Petromagnetic Study of Igneous Rocks of the Taitao Ridge, Chile Triple Junction, Site 862,” Proc. ODP, Sci. Res. 141, 51–57 (1995).

    Google Scholar 

  41. G. N. Eby, “Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  42. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification of Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  43. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematic of Rives Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  44. A. Harker, The Natural History of Igneous Rocks (Methuen, London, 1909).

    Google Scholar 

  45. N. B. W. Harris, J. A. Pearce, and A. G. Tindle, “Geochemical Characteristics of Collision-Zone Magmatism,” in Collision Tectonics, Ed. By M. P. Coward and A. C. Ries, Geol. Soc. Spec. Publ. 19, 67–81 (1986).

  46. S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Evolution of Chondrites and Achondrites. II,” Earth Planet. Sci. Lett. 67, 137–150 (1984).

    Article  Google Scholar 

  47. V. Janousek, C. M. Farrow, and V. Erban, GCDkit: Geochemical Data Toolkit in R, Version for Windows. Version 2.3 (May 11, 2008) (http://www.gla.ac.uk/gcdkit).

  48. P. B. Kelemen, K. Hanghij, and A. R. Greene, “One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust,” in The Crust, Ed. by R. L. Rudnick, Treatise on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Amsterdam, Elsevier, 2003), Vol. 3, pp. 593–659.

    Google Scholar 

  49. T. E. Krogh, “A Low-Contamination Method for Hydrothermal Decomposition of Zircon and Extraction of U and Pb for Isotopic Age Determination,” Geochim. Cosmochim. Acta 37, 485–494 (1973).

    Article  Google Scholar 

  50. A. M. Larin, Yu. V. Amelin, L. A. Neymark, and R. Sh. Krymsky, “The Origin of the 1.73–1.70 Ga Anorogenic Ulkan Volcanoplutonic Complex, Siberian Platform, Russia: Inferences from Geochronological, Geochemical and Nd-Sr-Pb: Isotopic Data,” An. Acad. Bras. Ci 69(3), 295–312 (1997).

    Google Scholar 

  51. T. C. Liew and A. W. Hofmann, “Precambrian Crustal Components, Plutonic Associations, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study,” Contrib. Mineral. Petrol. 98, 129–138 (1988).

    Article  Google Scholar 

  52. K. R. Ludwig, User’s Manual for ISOPLOT 3.00 A Geochronological Toolkit for Microsoft Excel, Geochronol. Center. Spec. Publ., No. 4, (2003).

  53. J. M. Mattinson, “A Study of Complex Discordance in Zircons Using Step-Wise Dissolution Techniques,” Contrib. Mineral. Petrol. 116, 117–129 (1994).

    Article  Google Scholar 

  54. E. A. K. Middlemost, “Naming Materials in Magma/Igneous Rock System,” Earth Sci. Rev. 37, 215–224 (1994).

    Article  Google Scholar 

  55. E. D. Mullen, “MnO/TiO2/P2O5 a Minor Element Discriminant for Basaltic Rocks of Oceanic Environment and Its Implications for Pertogenesis,” Earth Planet. Sci. Lett. 62(1), 53–62 (1983).

    Article  Google Scholar 

  56. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks,” J. Petrol. 25, 956–983 (1984).

    Google Scholar 

  57. A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

    Article  Google Scholar 

  58. E. S. Schandl and M. P. Gorton, “Application of High Field Strength Elements to Discriminate Tectonic Settings in VMS Environments,” Econ. Geol. 97, 629–642 (2002).

    Article  Google Scholar 

  59. J. S. Stacey and I. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26(2), 207–221 (1975).

    Article  Google Scholar 

  60. R. H. Steiger and E. Jager, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology,” Earth Planet. Sci. Lett. 28, 359–362 (1977).

    Article  Google Scholar 

  61. S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in Ocean Basins, Ed. by A. D. Saunders and M. Norry, Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

  62. S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Press, Oxford, 1985).

    Google Scholar 

  63. D. A. Wood, “The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  64. Z. Yu, Ph. Robinson, and P. McGoldrick, “An Evaluation of Methods for the Chemical Decomposition of Geological Materials for Trace Element Determination Using ICP-MS,” Geost. Newslett. 25(2–3), 199–217 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Didenko.

Additional information

Original Russian Text © A.N. Didenko, V.A. Gur’yanov, A.Yu. Peskov, A.N. Perestoronin, D.V. Avdeev, E.V. Bibikova, T.I. Kirnozova, M.M. Fugzan, 2010, published in Tikhookeanskaya Geologiya, 2010, Vol. 29, No. 5, pp. 44–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didenko, A.N., Gur’yanov, V.A., Peskov, A.Y. et al. Geochemistry and geochronology of the Proterozoic magmatic rocks of the Ulkan trough: New data. Russ. J. of Pac. Geol. 4, 398–417 (2010). https://doi.org/10.1134/S1819714010050040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714010050040

Kew words

Navigation