Skip to main content
Log in

Interaction between Hydrogen Sulfide and Muscarinic Receptors in the Regulation of Contractility of the Mouse Atrium

  • Experimental Articles
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is an endogenously synthesized gaseous transmitter that participates in the regulation of the cardiovascular system and has a cardioprotective effect under ischemia–reperfusion conditions. Here, we studied possible mechanisms of the interaction of H2S and muscarinic acetylcholine receptors in the regulation of mice atrium contractility in the isometric conditions. We show that sodium hydrosulfide (NaHS), an exogenous donor of H2S, caused dose-dependent and reversible depression of the contractile force in the concentration range from 1 μM to 5 mM. The negative inotropic effect of NaHS did not change after the activation of muscarinic acetylcholine receptors by carbachol. However, we observed that the negative inotropic effect of carbachol increased after preliminary application of NaHS. The application of the reducing agent dithiothreitol did not change the effects of carbachol, which indicated that the effects of NaHS was not related to a direct action on the disulfide bonds of the receptor’s protein subunits. The increased effects of carbachol after NaHS application were not prevented by the inhibition of intracellular signaling pathway that mediated activation of M-cholinergic receptors, including adenylate cyclase, guanylate cyclase, and NO-synthase. However, an increase in the carbachol negative inotropic effect was not observed when ATP-dependent potassium channels were inhibited by glibenclamide. In its turn, activation of ATPdependent potassium channels by diazoxide resulted in an increase in carbachol negative inotropic action in the atrial myocardium of mice similar to the effect of NaHS. Our data indicate that the enhanced negative inotropic effect of carbachol under the action of H2S in the mouse atrium was mediated by the activation of ATP-dependent potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H2S:

hydrogen sulfide

NaHS:

sodium hydrosulfide

CO:

carbon monoxide

NO:

nitric oxide

CBS:

cystathionine β-synthase

CGL:

cystathionine γ-lyase

3MST:

3-mercaptopyruvate sulfurtransferase

K(ATP)-channels:

ATPdependent potassium channels

M-AChR:

muscarinic acetylcholine receptors

M2-AChR and M3-AChR:

muscarinic acetylcholine receptors of type 2 and type 3, respectively

cGMP:

cyclic guanosine monophosphate

References

  1. Sitdikova, G.F. and Zefirov, A.L., Priroda (Moscow), 2010, no. 9, pp. 29–37.

    Google Scholar 

  2. Wang, R., Physiol. Rev., 2012, no. 92, pp. 791–896.

    Article  CAS  PubMed  Google Scholar 

  3. Gerasimova, E., Lebedeva, J., Yakovlev, A., Zefirov, A., Giniatullin, R., and Sitdikova, G., J. Neurosci., 2015, vol. 303, pp. 577–585.

    Article  CAS  Google Scholar 

  4. Shafigullin, M.Y., Zefirov, R.A., Sabirullina, G.I., Zefirov, A.L., and Sitdikova, G.F., Bull. Exp. Biol. Med., 2014, vol. 157, no. 3, pp. 302–306.

    Article  CAS  Google Scholar 

  5. Wang, M.J., Cai, W.J., and Zhu, Y.C., Life Sci., 2016, vol. 153, pp. 188–197.

    Article  CAS  PubMed  Google Scholar 

  6. Polhemus, D.J. and Lefer, D.J., Circ. Res., 2014, vol. 114, pp. 730–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elsey, D.J., Fowkes, R.C., and Baxter, G.F., Cell Biochem. Funct., 2010, vol. 28, no. 2, pp. 95–106.

    Article  CAS  PubMed  Google Scholar 

  8. Yong, Q.C., Pan, T.T., Hu, L.F., and Bian, J.S., J. Mol. Cell. Cardiol., 2008, vol. 44, no. 4, pp. 701–710.

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Y.G., Cao, Y.X., Wang, W.W., Ma, S.F., Yao, T., and Zhu, Y.C., Cardiovasc. Res., 2008, vol. 79, pp. 632–641.

    Article  CAS  PubMed  Google Scholar 

  10. Xu, M., Wu, Y.M., Li, Q., Wang, F.W., and He, R.R., Sheng Li Xue Bao, 2007, vol. 59, no. 2, pp. 215–220.

    CAS  PubMed  Google Scholar 

  11. Sitdikova, G.F., Khaertdinov, N.N., and Zefirov, A.L., Bull. Exp. Biol. Med., 2011, vol. 151, no. 2, pp. 163–166.

    Article  CAS  PubMed  Google Scholar 

  12. Khaertdinov, N.N., Ahmetshina, D.R., Zefirov, A.L., and Sitdikova, G.F., Biochemistry (Moscow) Suppl. Ser. A: Membrane Cell Biol., 2013, vol. 7, pp. 52–57.

    Article  Google Scholar 

  13. Khaertdinov, N.N., Lifanova, A.S., Gizzatullin, A.R., and Sitdikova, G.F., Genes and Cells, 2015, vol. 10, pp. 103–105.

    Google Scholar 

  14. Lifanova, A.S., Khaertdinov, N.N., Zakharov, A.V., Gizzatullin, A.R., and Sitdikova, G.F., Genes and Cells, 2014, vol. 9, no. 3, pp. 94–98.

    Google Scholar 

  15. Lifanova, A., Khaertdinov, N., and Sitdikova, G., BioNanoScience, 2017, vol. 7, no. 2, pp. 306–308.

    Article  Google Scholar 

  16. Coletta, C., Papapetropoulos, A., Erdelyi, K., Olah, G., Módis, K., Panopoulos, P., Asimakopoulou, A., Gerö, D., Sharina, I., Martin, E., and Szabo, C., Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 23, pp. 9161–9166.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aydinoglu, F., Dalkir, F.T., Demirbag, H.O., and Ogulener, N., Nitric Oxide, 2017, vol. 70, pp. 51–58.

    Article  CAS  PubMed  Google Scholar 

  18. Sitdikova, G.F., Fuchs, R., Kainz, V., Weiger, T.M., and Hermann, A., Front. Physiol., 2014, vol. 5, no. 431, pp. 1–15.

    Google Scholar 

  19. DeLeon, E.R., Stoy, G.F., and Olson, K.R., Anal. Biochem., 2012, vol. 421, no. 1, pp. 203–207.

    Article  CAS  Google Scholar 

  20. Geng, B., Yang, J., Qi, Y., Zhao, J., Pang, Y., Du, J., and Tang, C., Biochem. Biophys. Res. Commun., 2004, vol. 313, pp. 362–368.

    Article  CAS  PubMed  Google Scholar 

  21. Abramochkin, D.V., Moiseenko, L.S., and Kuzmin, V.S., Bull. Exp. Biol. Med., 2009, vol. 147, no. 6, pp. 683–686.

    Article  CAS  PubMed  Google Scholar 

  22. Hara, Y., Ike, A., Tanida, R., Okada, M., and Yamawaki, H., J. Pharmacol. Exp. Ther., 2009, vol. 331, no. 3, pp. 808–815.

    Article  CAS  PubMed  Google Scholar 

  23. Harvey, R.D. and Belevych, A.E., Br. J. Pharmacol., 2003, vol. 139, no. 6, pp. 1074–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balligand, J.L., Kelly, R.A., Marsden, P.A., Smith, T.W., and Michel, T., Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 347–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Z., Shi, H., and Wang, H., Br. J. Pharmacol., 2004, vol. 142, no. 3, pp. 395–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moncada, S., Palmer, R.M.J., and Higgs, E.A., Pharmacol. Rev., 1991, vol. 43, pp. 109–142.

    CAS  PubMed  Google Scholar 

  27. Lu, J., Zang, W.J., Yu, X.J., Jia, B., Chorvatova, A., and Sun, L., Eur. J. Pharmacol., 2006, vol. 549, pp. 133–139.

    Article  CAS  PubMed  Google Scholar 

  28. Ribalet, B., John, S.A., Xie, L.H., and Weiss, J.N., J. Mol. Cell. Cardiol., 2005, vol. 39, pp. 71–77.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, B., Tang, G., Cao, K., Wu, L., and Wang, R., Antioxid. Redox Signal., 2010, vol. 12, no. 10, pp. 1167–1178.

    Article  CAS  PubMed  Google Scholar 

  30. Mustafa, A.K., Gadalla, M.M., and Snyder, S.H., Sci. Signal., 2009, vol. 2, no. 68, pp. 1–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Sitdikova.

Additional information

Original Russian Text © A.S. Blokhina, N.N. Khaertdinov, A.L. Zefirov, G.F. Sitdikova, 2018, published in Neirokhimiya, 2018, Vol. 35, No. 4, pp. 294–300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhina, A.S., Khaertdinov, N.N., Zefirov, A.L. et al. Interaction between Hydrogen Sulfide and Muscarinic Receptors in the Regulation of Contractility of the Mouse Atrium. Neurochem. J. 12, 299–304 (2018). https://doi.org/10.1134/S1819712418040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712418040025

Keywords

Navigation