Skip to main content
Log in

A Numerical Model and Analysis of Microscale Explosive Initiator Integrated with Thin-Film Reactive Bridge of Nanoscale Aluminum/Nickel Multilayers

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

A reactive bridge of nanoscale Al/Ni multilayers, or nanolaminates, is a recent advance in microscale thin-film initiator systems, potentially improving performances of explosive initiator. This numerical study introduces a three-dimensional (3D) modeling of initiator with a reactive bridge for more realistic and accurate system prediction as compared with the existing one-dimensional (1D) approximation of thin-film initiator. The model gives transient simulations for the atomic species and thermal diffusion, as well as prediction of electric potential distribution and pulsed energy deposition in the platinum bridge film. The computational results show that 3D effects are substantial such locally concentrated bridge joule heating and reduced reaction sensitivity in bimetallic multilayers by lateral heat loss. The horizontal reaction wave propagation from corners of the nanolaminates is also examined, as it effectively invalidates the 1D model of uniform bridge heating and vertical reaction advances across bimetallic multilayers. Optimization of various system design parameters is also discussed in view of achievement of best initiator performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

REFERENCES

  1. Pezousa, H., Rossi, C., Sancheza, M., Mathieua, F., Dollata, X., Charlotta, S., Salvagnaca, L., and Conederaa, V., Integration of a MEMS Based Safe Arm and Fire Device, Sens. Actuator A Phys., 2010, vol. 159, pp. 157–167.

    Article  Google Scholar 

  2. Adams, D.P., Reactive Multilayers Fabricated by Vapor Deposition: A Critical Review, Thin Solid Films, 2015, vol. 576, pp. 98–128.

    Article  ADS  Google Scholar 

  3. Zhang, K., Rossi, C., Petrantoni, M., and Mauran, N., A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials with a Au/Pt/Cr Microheater, J. Microel. Syst., 2008, vol. 17, pp. 832–836.

    Article  Google Scholar 

  4. Xu, J., Tai, Y., Ru, C., Dai, J., Ye, Y., Shen, R., and Zhu, P., Tuning the Ignition Performance of a Microchip Initiator by Integrating Various Al/MoO3 Reactive Multilayer Films on a Semiconductor Bridge, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 5580–5589.

    Article  Google Scholar 

  5. Baginski, T.A. and Fahey, W.D., The Reactive Bridge: A Novel Solid-State Low Energy Initiator, 45th Annual Fuze Conference, Long Beach, CA, USA, 2001.

  6. Tanaka, S., Kondo, K., Habu, H., Itoh, A., Watanabe, M., Hori, K., and Esashi, M., Test of B/Ti Multilayer Reactive Igniters for a Micro Solid Rocket Array Thruster, Sens. Actuator A Phys., 2008, vol. 144, pp. 361–366.

    Article  Google Scholar 

  7. Qiu, X., Tang, R., Liu, R., Huang, H., Guo, S., and Yu, H., A Micro Initiator Realized by Reactive Ni/Al Nanolaminates, J. Mater. Sci. Mater. Electron., 2012, vol. 23, pp. 2140–2144.

    Google Scholar 

  8. Yan, Y., Shi, W., Jiang, H., Cai, X., Deng, X., Xiong, J., and Zhang, W., Characteristics of the Energetic Igniters through Integrating B/Ti Nano-Multilayers on TaN Film Bridge, Nanoscale Res. Lett., 2015, vol. 10, p. 244.

    Article  ADS  Google Scholar 

  9. Zhang, Y., Jiang, H., Zhao, X., Yan, Y., Zhang, W., and Li, Y., Characteristics of the Energetic Micro-Initiator through Integrating Al/Ni Nano-Multilayers with Cu Film Bridge, Nanoscale Res. Lett., 2017, vol. 12, p. 38.

    Article  ADS  Google Scholar 

  10. Zhang, Y., Jiang, H., Xing, D., Zhao, X., Zhang, W., and Li, Y., B/Ti Nano-Multilayers as Effective Heat Energy Source for Enhanced Micro-Initiator, Appl. Therm. Eng., 2017 vol. 117, pp. 617–621.

    Article  Google Scholar 

  11. Kim, K., A Microscale Explosive Initiator Integrated with a Reactive Thin-Filmed Metallic Bridge of Boron/Titanium Laminated Layers, Microsyst. Technol., 2021, vol. 27, pp. 1379–1388.

    Article  Google Scholar 

  12. Jayaraman, S., Mann, A.B., Reiss, M., and Knio, O.M., Numerical Study of the Effect of Heat Losses on Self-Propagating Reactions in Multilayer Foils, Combust. Flame, 2001, vol. 124, pp. 178–194.

    Article  Google Scholar 

  13. Besnoin, E., Cerutti, S., Knio, O.M., and Weihs, T.P., Effect of Reactant and Product Melting on Self-Propagating Reactions in Multilayer Foils, J. Appl. Phys., 2002, vol. 92, pp. 5474–5481.

    Article  ADS  Google Scholar 

  14. Sallom, M. and Knio, O.M., Simulation of Reactive Nanolaminates Using Reduced Models: I. Basic Formulation, Combust. Flame, 2010, vol. 157, pp. 288–295.

    Article  Google Scholar 

  15. Knepper, R., Snyder, M., Fritz, G., Fisher, K., Knio, O.M., and Weihs, T.P., Effect of Varying Bilayer Distribution on Reaction Heat and Velocity in Reactive Al/Ni Multilayers, J. Appl. Phys., 2009, vol. 105, p. 083504.

    Article  ADS  Google Scholar 

  16. Gunduz, I.E., Onel, S., Doumanidis, C.C., Rebholz, C., and Son, S.F., Simulations of Nanoscale Ni/Al Multilayer Foils with Intermediate Ni2Al3 Growth, J. Appl. Phys., 2015, vol. 117, p. 214904.

    Article  ADS  Google Scholar 

  17. Kim, K., Analysis of Self-Propagating Intermetallic Reaction in Nanoscale Multilayers of Binary Metals, Met. Mater. Int., 2017, vol. 23, pp. 326–335.

    Article  ADS  Google Scholar 

  18. Kim, K., Numerical Investigation of the Self-Propagation of Intermetallic Reaction Waves in Nanoscale Aluminum/Nickel Reactive Multilayer Foils, Korean J. Met. Mater., 2019, vol. 57, pp. 97–107.

    Article  Google Scholar 

  19. Li, J., Jiao, Q., Chu, E., Chen, J., Wu, S., Wang, J., Cheng, J., Wang, J., and Wang, X., Investigating the Explosion Process of Nine-Point Exploding Foil Bridge, AIP Adv., 2021, vol. 11, p. 035317.

    Article  ADS  Google Scholar 

  20. Bao, B., Yan, N., Jiang, Y., Wang, G., and Ding, W., Temperature Measurements and Multi-Physical Field Simulations of Micro-Sized Metal Film Bridge, Appl. Therm. Eng., 2016 vol. 104, pp. 121–128.

    Article  Google Scholar 

  21. Sallom, M. and Knio, O.M., Simulation of Reactive Nanolaminates Using Reduced Models: II. Normal Propagation, Combust. Flame, 2010, vol. 157, pp. 436–445.

    Article  Google Scholar 

  22. Liu, W., Kan, W., Xie, R., Ren, X., Liu, L., and Yu, K., Simulation of Transient Heat Response Characteristics of Thin-Film Nichrome Igniter, 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers, Dalian, China, 2021.

  23. Lawless, Z.D., Hobbs, M.L., and Kaneshige, M.J., Thermal Conductivity of Energetic Materials, J. Energ. Mater., 2020, vol. 38, pp. 214–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Kim, K. A Numerical Model and Analysis of Microscale Explosive Initiator Integrated with Thin-Film Reactive Bridge of Nanoscale Aluminum/Nickel Multilayers. J. Engin. Thermophys. 31, 111–131 (2022). https://doi.org/10.1134/S181023282201009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282201009X

Navigation