Skip to main content
Log in

New family of solid sorbents for adsorptive cooling: Material scientist approach

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper summarizes literature data concerning a new family of materials for adsorptive cooling. They are composites of a type of “salt confined to a porous host matrix” (so called selective water sorbents or SWSs). These materials demonstrate an intermediate behavior between solid adsorbents, salt hydrates, and liquid absorbents. The thermodynamic equilibrium with water vapor has been measured for more than thirty SWSs based on halides, sulphates, and nitrates of alkaline and alkaline earth metals that are confined to various matrices (silica, alumina, porous carbons, clays, MCM-41, etc.). The important advantage of the SWSs is the possibility to controllably modify their water sorption properties in a wide range by varying (a) the chemical nature of the impregnated salt, (b) the porous structure of the host matrix, (c) the amount of the confined salt, and (d) the preparation conditions. This, in principle, allows purposeful synthesis of new solid sorbents with predetermined properties that fit the demands of particular adsorptive cycles. Appropriate examples are presented in the paper. A recent study of adsorption chillers with granulated and compact layers of SWS-1L (CaCl2 in mesoporous silica) showed an experimental COP as high as 0.6, which is larger than that reported for silica gel/water and zeolite/water systems under the same cycle conditions.

The concept of matrix modification with an active salt can also be used for synthesis of efficient sorbents of carbon dioxide, methanol, and ammonia. Other practical applications of SWSs are briefly discussed, such as heat protection, gas drying, and fresh water production from the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nunez, T., Henning, H.-M., and Mittelbach, W., Adsorption Cycle Modelling: Characterization and Comparison of Materials, Proc. Int. Sorption Heat Pump Conf., Germany, Munich, 1999, March 24–26, pp. 209–217.

  2. Aristov, Yu.I., An Optimal Sorbent for Adsorption Heat Pumps: Thermodynamic Requirements and Molecular Design, Proc. VI Int. Seminar “Heat Pipes, Heat Pumps, Refrigerators”, 12–15 Sept., 2005, Belarus, Minsk, pp. 342–353.

  3. Srivastava, N.C. and Eames, I.W., A Review of Adsorbents and Adsorbates in Solid-Vapor Adsorption Heat Pump Systems, Appl. Therm. Engn., 1998, vol. 18, pp. 707–714.

    Article  Google Scholar 

  4. Meunier, F., Solid Sorption Heat Powered Cycles for Cooling and Heat Pumping Applications, Appl. Therm. Engn., 1998, vol. 18, pp. 715–729.

    Article  Google Scholar 

  5. Chua, H.T., Ng, K.C., Chakraborty, A., Oo, N.M., and Othman, M.A., Adsorption Characteristics of Silica Gel-Water System, J. Chem. Eng. Data, 2002, vol. 47, pp. 1177–1181.

    Article  Google Scholar 

  6. Wang, X., Zimmermann, W., Ng, K.S., Chakraboty, A., and Keller, J.U., Investigation of the Isotherms of Silica Gel + Water System: TG and Volumetric Methods, J. Therm. Anal. and Calorimetry, 2004, vol. 76, pp. 659–669.

    Article  Google Scholar 

  7. Andersson, J.Y., Bjurstroem, H., Azoulay, M., and Carlsson, B., Experimental and Theoretical Investigation of the Kinetics of the Sorption of Water Vapor by Silica Gel, J. Chem. Soc., Faraday Trans. 1, 1985, vol. 81, pp. 2681–2692.

    Google Scholar 

  8. Chalaev, D.M. and Aristov, Yu.I., Analysis of Adsorbtive Chiller Operation: Influence of Water Sorbent Properties, Proc. V Minsk Int. Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, Sept. 8–11, 2003, pp. 471–477.

  9. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica, New York: Wiley, 1979

    Google Scholar 

  10. Isobe, H., US Patent 1 740 351, Dehydrating substance, 1929.

  11. Levitskii, E.A., Aristov, Yu.I., Tokarev, M.M., and Parmon, V.N., “Chemical Heat Accumulators”—A New Approach to Accumulating Low Potential Heat, Sol. Energy Mater. Sol. Cells, 1996, vol. 44, no. 3, pp. 219–235.

    Article  Google Scholar 

  12. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., and Restuccia, G., Selective Water Sorbents for Multiple Applications: I. CaCl2 Confined in Mesopores of the Silica Gel: Sorption Properties, React. Kinet. Cat. Lett., 1996, vol. 59, no. 2, pp. 325–334.

    Article  Google Scholar 

  13. Aristov, Yu.I., Tokarev, M.M., Cacciola, G., and Restuccia, G., Selective Water Sorbents for Multiple Applications: II. CaCl2 Confined in Micropores of the Silica Gel: Sorption Properties, React. Kinet. Cat. Lett., 1996, vol. 59, no. 2, pp. 335–342.

    Article  Google Scholar 

  14. Gordeeva, L.G., Resticcia, G., Cacciola, G., and Aristov, Yu.I., Selective Water Sorbents for Multiple Applications: V. LiBr Confined in Mesopores of Silica Gel: Sorption Properties, React. Kinet. Cat. Lett., 1998, vol. 63, no. 1, pp. 81–88.

    Article  Google Scholar 

  15. Mrowiec-Bialon, J., Jarzebskii, A.B., Kachowski, A., Malinovski, J., and Aristov, Yu.I., Effective Inorganic Hybrid Adsorbents of Water Vapor by the Sol-Gel Method, Chem. Mater., 1997, vol. 9, no. 11, pp. 2486–2490.

    Article  Google Scholar 

  16. Gordeeva, L.G., Resticcia, G., Cacciola, G., and Aristov, Yu.I., Properties of the System “LiBr-H2O” Dispersed in Silica Gel Pores: Vapor Equilibrium, Zh. Fiz. Khimii, 1998, vol. 72, no. 7, pp. 1236–1240.

    Google Scholar 

  17. Gordeeva, L.G., Restuccia, G., Cacciola, G., Tokarev, M.M., and Aristov, Yu.I., Properties of the System “Lithium Bromide-Water” in Pores of Expanded Graphite, Sibunite and Aluminum Oxide, Russ. J. Phys. Chim., 2000, vol. 74, no. 12, pp. 2016–2020.

    Google Scholar 

  18. Aristov, Yu.I., Restuccia, G., Cacciola, G., and Parmon, V.N., A Family of New Working Materials for Solid Sorption Air Conditioning Systems, Appl. Therm. Engn., 2002, vol. 22, no. 2, pp. 191–204.

    Article  Google Scholar 

  19. Gordeeva, L.G., Glaznev, I.S., and Aristov, Yu.I., Sorption of Water by Sodium, Copper, and Magnesium Sulfates Dispersed into Mesopores of Silica Gel and Alumina, Russ. J. Phys. Chem., 2003, vol. 77, no. 10, pp. 1715–1720.

    Google Scholar 

  20. Aristov, Yu.I., Thermochemical Energy Storage: New Processes and Materials, Dr. Sci. Dissertation, Novosibirsk: Boreskov Inst. of Catalysis, 2003.

    Google Scholar 

  21. Gordeeva, L.G., New Materials for Thermochemical Energy Storage, Cand. Sci. Dissertation, Boreskov Inst. of Catalysis, 2000.

  22. Tokarev, M.M., Properties of the Composites “Calcium Chloride in a Porous Matrix”, Cand. Sci. Dissertation, Boreskov Inst. of Catalysis, 2003.

  23. Simonova, I.A. and Aristov, Yu.I., Sorption Properties of Calcium Nitrate Dispersed in Silica Gel: the Effect of Pore Size, Russ. J. Phys. Chem., 2005, vol. 79, no. 8, pp. 1307–1311.

    Google Scholar 

  24. Daou, K., Wang, R.Z., and Xia, Z.Z., Development of a New Synthesized Adsorbent for Refrigeration and Air Conditioning Applications, Appl. Therm. Eng., 2006, vol. 26, no. 1, pp. 56–65.

    Article  Google Scholar 

  25. Jänchen, J., Ackermann, D., Weiler, E., Stach, H., and Brösicke, W., Calorimetric Investigation on Zeolites, AlPO4’s and CaCl2 Impregnated Attapulgite for Thermochemical Storage of Heat, Thermochimica Acta, 2005, vol. 434, nos. 1, 2, pp. 37–41.

    Article  Google Scholar 

  26. Liu, Y., Wang, R., and Xia, Z., Continuous Cycle Unit for Extracting Water from Air, J. Chem. Ind. Eng. (China), 2004, vol. 55, no. 6, pp. 1002–1005.

    Google Scholar 

  27. Liu, C.Y., Morofuji, K., Tamura, K., and Aika, K.-I., Water Sorption of CaCl2-Containing Materials as Heat Storage Media, Chem. Lett., 2004, vol. 33, no. 3, pp. 292–293.

    Article  Google Scholar 

  28. Daou, K., Wang, R.Z., and Xia, Z.Z., Desiccant Cooling Air Conditioning: A Review, Renewable and Sustainable Energy Reviews, 2006, vol. 10, no. 2, pp. 55–77.

    Article  Google Scholar 

  29. Jänchen, J., Ackermann, D., Stach, H., and Brösicke, W., Studies of the Water Adsorption on Zeolites and Modified Mesoporous Materials for Seasonal Storage of Solar Heat, Solar Energy, 2004, vol. 76, nos. 1–3, pp. 339–344.

    Article  Google Scholar 

  30. Liu, Y., Fan, H., and Wang, R., Performances Comparison of a New Composite Adsorbent SiO2·xH2O · yCaCl2 and Other Common Adsorbents to Extract Water from Air, Acta Engn. Solaris Sinica, 2003, vol. 24, no. 2, pp. 141–144.

    Google Scholar 

  31. Critoph, R., and Yang, Y., Review of Trends in Solid Sorption Refrigeration and Heat Pumping Technology, Proc. Inst. Mech. Engn., part E, J. Mech. Proc. Eng., 2005, vol. 219, pp. 1–16.

    Google Scholar 

  32. Zhang, X.J., Sumathu, K., Dai, Y.J., and Wang, R.Z., Parametric Study on the Composite Silica Gel—Calcium Chloride Desiccant Rotary Wheel Employing Fractal BET Adsorption Isotherm, Int. J. Eng. Res., 2005, vol. 29, pp. 37–51.

    Article  Google Scholar 

  33. Hill, T., Thermodynamics of Small Systems, New York: Benjamin, 1964.

    Google Scholar 

  34. Oxtoby, D.W., In: Advances in Chemical Physics, New York: Wiley, vol. 70, 1988.

    Book  Google Scholar 

  35. Gordeeva, L.G., Gubar, A.V., Plyasova, L.M., Malakhov, V.V., and Aristov, Yu.I., Composite Water Sorbents of the Salt in Silica Gels Pore Type: the Effect of the Interaction between the Salt and the Silica Gel Surface on the Chemical and Phase Compositions and Sorption Properties, Russ. Kinet. Cat., 2005, vol. 46, no. 5, pp. 736–742.

    Article  Google Scholar 

  36. Gordeeva, L.G., Glaznev, I.S., Malakhov, V.V., and Aristov, Yu.I., Influence of Calcium Chloride Interaction with Silica Surface on Phase Composition and Sorption Properties of Dispersed Salt, Russ. J. Phys. Chem., 2003, vol. 77. no. 11, pp. 1843–1847.

    Google Scholar 

  37. Gordeeva, L.G., Savchenko, E.V., Glaznev, I.S., Malakhov, V.V., and Aristov, Yu.I., Impact of Phase Composition on Water Adsorption on Inorganic Hybrides “Salt/Silica”, J. Coll. Interface Sci., 2006 (submitted).

  38. Aristov, Yu.I., Restuccia, G., Tokarev, M.M., Buerger, H.-D., and Freni, A., Selective Water Sorbents for Multiple Applications. 11. CaCl2 Confined to Expanded Vermiculite, React. Kinet. Cat. Lett., 2000, vol. 71, no. 2, pp. 377–384.

    Article  Google Scholar 

  39. Tokarev, M., Gordeeva, L., Romannikov, V., Glaznev, I., and Aristov, Yu.I., New Composite Sorbent “CaCl2 in Mesopores of MCM-41” for Sorption Cooling/Heating, Int. J. Thermal Sci., 2002, vol. 41, no. 5, pp. 470–474.

    Article  Google Scholar 

  40. Dubinin, M.M. and Astakhov, V.F., Izv. Akad. Nauk USSR, Ser. Khim., 1971, no. 5.

  41. Prokop’ev, S.I. and Aristov, Yu.I., Concentrated Aqueous Electrolyte Solutions: Analytical Equations for Humidity-Concentration Dependence, J. Sol. Chem., 2000, vol. 29, no. 7, pp. 633–649.

    Article  Google Scholar 

  42. Tokarev, M.M., Okunev, B.N., Safonov, M.S., Heifets, L.I., and Aristov, Yu.I., Approximation Equations for Describing the Sorption Equilibrium between Water Vapor and a CaCl2-in-Silica Gel Composite Sorbent, Russ. J. Phys. Chem., 2005, vol. 79, no. 9, pp. 1490–1494.

    Google Scholar 

  43. Aristov, Yu.I., Di Marco, G., Tokarev, M.M., and Parmon, V.N., Selective Water Sorbents for Multiple Applications: III. CaCl2 Solution Confined in Micro-and Mesoporous Silica Gels: Pore Size Effect on the “Solidification-Melting” Diagram, React. Kinet. Cat. Lett., 1997, vol. 61, no. 1, pp. 147–160.

    Article  Google Scholar 

  44. Aristov, Yu.I., Selective Water Sorbents for Air Drying: from the Lab to the Industry, Catalysis in Industry, 2004, no. 6, pp. 36–41.

  45. Tanashev, Yu.Yu., Parmon, V.N., and Aristov, Yu.I., Heat Front Retardation in a Porous Medium Containing Evaporating Liquid, Inzh.-Fiz. Zh., 2001, vol. 74, no. 5, pp. 3–6.

    Google Scholar 

  46. Aristov, Yu.I., Tokarev, M.M., Gordeeva, L.G., Snitnikov, V.N., and Parmon, V.N., New Composite Sorbents for Solar-Driven Technology of Fresh Water Production from the Atmosphere, Solar Energy, 1999, vol. 66, no. 2, pp. 165–168.

    Article  Google Scholar 

  47. Aristov, Yu.I., Mezentsev, I.V., and Mukhin, V.A., A study of the Moisture Exchange Under Air Filtration Through an Adsorbent Layer, J. Eng. Therm. Phys., 2005, vol. 78, no. 2, pp. 44–50.

    Google Scholar 

  48. Restuccia, G., Freni, A., Vasta, S., and Aristov, Yu., Selective Water Sorbents for Solid Sorption Chiller: Experimental Results and Modelling, Int. J. Refrig., 2004, vol. 27, no. 3, pp. 284–293.

    Article  Google Scholar 

  49. Restuccia, G., Freni, A., Vasta, S., Tokarev, M.M., and Aristov, Yu.I., Adsorptive Chiller Based on New Working Pair “CaCl2 in Silica-Water”, Kholodilnaya Tekhnika, 2005, no. 1, pp. 2–6.

  50. Freni, A., Russo, F., Vasta, S., Tokarev, M.M., Aristov, Yu.I., and Restuccia, G., An Advanced Solid Sorption Chiller Using SWS-1L, Appl. Therm. Eng., 2006, vol. 26, no. 10.

  51. Restuccia, G., Aristov, Yu.I., Maggio, G., Cacciola, G., and Tokarev, M.M., Performance of Sorption Systems Using New Selective Water Sorbents, Proc. Int. Sorption Heat Pump Conf., Germany, Munich, 1999, March 24–26, pp. 219–223.

  52. Vasil’ev, L.L., Mishkinis, D.A., Antukh, A.A., and Vasil’ev, L.L., A Solar and Electrical Solid Sorption Refrigerator, Int. J. Thermal Sci., 1999, vol. 38, no. 2, pp. 519–524.

    Google Scholar 

  53. Vasil’ev, L.L., Kanonchik, L.E., Antukh, A.A., and Kulakov, A.G., NaX, Carbon Fibre and CaCl2 Ammonia Reactors for Heat Pumps and Refrugerators, Adsorption, 1996, vol. 2, pp. 311–316.

    Article  Google Scholar 

  54. Vasil’ev, L., Nikanpour, D., Antukh, A., Snelson, K., Vasil’ev, L., Jr., and Lebru, A., Multisalt-Carbon Chemical Cooler for Space Applications, J. Eng. Phys. Thermophys., 1998, vol. 72, no. 3, pp. 595–600.

    Google Scholar 

  55. Vasil’ev, L.L., Mishkinis, D.A., Antukh, A.A., and Vasil’ev, L., Jr., Solar-Gas Solid Sorption Refrigerator, Adsorption, 2001, vol. 7, pp. 149–161.

    Article  Google Scholar 

  56. Spinner, B., Ammonia-Based Thermochemical Transformers, Heat Recovery Systems, 1993, vol. 13, no. 4, pp. 301–307.

    Article  Google Scholar 

  57. Mauran, S., Lebrun, M., Prades, P., Moreau, M., Spinner, B., and Drapier, C., US Patent 5 283 219, 1994.

  58. Wang, L.W., Wang, R.Z., Wu, J.Y., Wang, K., and Wang, S.G., Compound Adsorbent for Adsorption Ice Makers on Fishing Boats, Int. J. Refrig., 2004, vol. 27, pp. 401–408.

    Article  Google Scholar 

  59. Sharonov, V.E., Veselovskaya, J.V., and Aristov, Yu.I., Ammonia Sorption on Composites “CaCl2 in Inorganic Host Matrix”: Isosteric Chart and Its Performance, Int. J. Low Carbon Tech., 2006, vol. 1, no. 3, pp. 191–200.

    Google Scholar 

  60. Gordeeva, L.G., Restuccia, G., Tokarev, M.M., Freni, A., Kraynov, A.V., Pankratiev, Yu.D., and Aristov, Yu.I., Methanol Sorption on “CaCl2/Silica Gel” Composite: Sorption Equilibrium, Calorimetry, Proc. 14th Int. Conf. Chem. Proc. Eng., 27–31 Aug., 2000, Czech Rep., Praha, vol. 2, p. 250.

  61. Gordeeva, L., Freni, A., Restuccia, G., and Aristov, Yu., A New Family of Methanol Sorbents for Adsoptive Air Conditioning Driven by Low Temperature Heat, Proc. Int. Conf. on Heat Powered Cycles, Newcastle, Sept. 11–14, 2006.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristov, Y.I. New family of solid sorbents for adsorptive cooling: Material scientist approach. J. Engin. Thermophys. 16, 63–72 (2007). https://doi.org/10.1134/S1810232807020026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232807020026

Key words

Navigation