Skip to main content
Log in

Interchromosomal Contacts of rDNA Clusters in Three Human Cell Lines Are Associated with Silencing of Genes Controlling Morphogenesis

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

To study the rDNA contacts with genes in three human cell lines of different origin, we used 4C approach. Our data indicate that the same set of about five hundred genes frequently shape contacts with rDNA clusters in HEK293T, K652, and hESM01 cells. Gene ontology search suggests that the genes are involved in development and morphogenesis. Approximately one hundred of these genes are highly associated with silencing by H3K27me3 mark in different normal cells, including bronchial epithelial cells, keratinocytes, myoblasts, monocytes, endothelial cells, kidney epithelial cells, and some others. We conclude that the concerted silencing of specific group of rDNA-contacting genes controlling development occurs during differentiation. We assume that the phase separation mechanisms may be involved in the rDNA-mediated silencing of a set of genes via the contacts with inactive rDNA clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Dekker, J., Rippe, K., and Dekker, M., Capturing chromosome conformation, Science, 2002, vol. 95, pp. 1306–1311. https://doi.org/10.1126/science.1067799

  2. Sidorenko, D.S., Sidorenko, I.A., Zykova, T.Y., Goncharov, F.P., Larsson, J., and Zhimulev, I.F., Molecular and genetic organization of bands and interbands in the dot chromosome of Drosophila melanogaster, Chromosoma, 2019, vol. 128, pp. 97–117. https://doi.org/10.1007/s00412-019-00703-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghavi-Helm, Y., Jankowski, A., Meiers, S., Viales, R.R., Korbel, J.O., and Furlong, E.E.M., Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression, Nat. Genet., 2019, vol. 51, no. 8, pp. 1272–1282. https://doi.org/10.1038/s41588-019-0462-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sarnataro, S., Chiariello, A.M., Esposito, A., Prisco, A., and Nicodemi, M., Structure of the human chromosome interaction network, PLoS One, 2017, vol. 12, no. 11. e0188201. https://doi.org/10.1371/journal.pone.0188201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ananiev, E.V., Barsky, V.E., Ilyin, Y.V., and Churiko, N.A., Localization of nucleoli in Drosophila melanogaster polytene chromosomes, Chromosoma, 1981, vol. 81, pp. 619–628. PMID: 6790245

    Article  CAS  Google Scholar 

  6. Tchurikov, N.A., Fedoseeva, D.M., Sosin, D.V., Snezhkina, A.V., Melnikova, N.V., Kudryavtseva, A.V., Kravatsky, Y.V., and Kretova, O.V., Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation, J. Mol. Cell. Biol., 2015, vol. 7, pp. 366–382. https://doi.org/10.1093/jmcb/mju038

    Article  CAS  PubMed  Google Scholar 

  7. Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-André, V., Sigova, A.A., Hoke, H.A., and Young, R.A., Super-enhancers in the control of cell identity and disease, Cell, 2013, vol. 155, pp. 934–947. https://doi.org/10.1016/j.cell.2013.09.053

    Article  CAS  Google Scholar 

  8. Savić, N., Bär, D., Leone, S., Fromme, S.C., Weber, F.A., Vollenweider, E., Ferrari, E., Ziegler, U., Kaech, A., Shakhova, O., Cinelli, P., and Santoro, R., lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs, Cell Stem Cell, 2014, vol. 15, pp. 720–734. https://doi.org/10.1016/j.stem.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  9. Tchurikov, N.A., Fedoseeva, D.M., Klushevskaya, E.S., Slovohotov, I.Y., Chechetkin, V.R., Kravatsky, Y.V., and Kretova, O.V., rDNA clusters make contact with genes that are involved in differentiation and cancer and change contacts after heat shock treatment, Cells, 2019, vol. 8, no. 11, p. 1393. https://doi.org/10.3390/cells8111393

    Article  CAS  PubMed Central  Google Scholar 

  10. Lagarkova, M.A., Shutova, M.V., Bogomazova, A.N., Vassina, E.M., Glazov, E.A., Zhang, P., Rizvanov, A.A., Chestkov, I.V., and Kiselev, S.L., Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale, Cell Cycle, 2010, vol. 9, pp. 937–946.

    Article  CAS  Google Scholar 

  11. Kretova, O.V., Fedoseeva, D.M., Kravatsky, Y.V., Alembekov, I.R., Slovohotov, I.Y., and Tchurikov, N.A., Homeotic DUX4 genes that control human embryonic development at the two-cell stage are surrounded by regions contacting with rDNA gene clusters, Mol. Biol. (Moscow), 2019, vol. 53, no. 2, pp. 268–273. https://doi.org/10.1134/S0026898419020083

    Article  CAS  Google Scholar 

  12. Tchurikov, N.A., Klushevskaya, E.S., Kravatsky, Y.V., Kravatskaya, G.I., Fedoseeva, D.M., and Kretova, O.V., Interchromosomal contacts of rDNA clusters with DUX genes in human chromosome 4 are very sensitive to heat shock treatment, Dokl. Biochem. Biophys., 2020, vol. 490, no. 1, pp. 50–53. https://doi.org/10.1134/S1607672920010032

    Article  CAS  PubMed  Google Scholar 

  13. Lavarone, E., Barbieri, C.M., and Pasini, D., Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity, Nat. Commun., 2019, vol. 10, p. 1679. https://doi.org/10.1038/s41467-019-09624-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kretova, O.V., Fedoseeva, D.M., Kravatsky, Y.V., Klushevskaya, E.S., Alembekov, I.R., Slovohotov, I.Y., and Tchurikov, N.A., Contact sites of rDNA clusters with FANK1 gene correspond to repressed chromatin, Mol. Biol. (Moscow), 2020, vol. 54, no. 2, pp. 262–266. https://doi.org/10.31857/S002689842002007X

    Article  CAS  Google Scholar 

  15. Shrinivas, K., Sabari, B.R., Coffey, E.L., Klein, I.A., Boija, A., Zamudio, A.V., Schuijers, J., Hannett, N.M., Sharp, P.A., Young, R.A., and Chakraborty, A.K., Enhancer features that drive formation of transcriptional condensates, Mol. Cell, 2019, vol. 75, pp. 549–561. https://doi.org/10.1016/j.molcel.2019.07.009

  16. You, K., Huang, Q., Yu, C., Shen, B., Sevilla, C., Shi, M., Hermjakob, H., Chen, Y., and Li, T., PhaSepDB: a database of liquid-liquid phase separation related proteins, Nucleic Acids Res., 2020, vol. 48, no. D1, pp. D354–D359. https://doi.org/10.1093/nar/gkz847

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.A. Lagarkova for providing hESM01 cells.

Funding

This study was supported by the Russian Science Foundation (project no. 18-14-00122) and the Russian Foundation for Basic Research (project nos. 20-04-01134 and 18-04-00198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Tchurikov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchurikov, N.A., Klushevskaya, E.S., Kravatsky, Y.V. et al. Interchromosomal Contacts of rDNA Clusters in Three Human Cell Lines Are Associated with Silencing of Genes Controlling Morphogenesis. Dokl Biochem Biophys 496, 22–26 (2021). https://doi.org/10.1134/S1607672921010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672921010038

Keywords:

Navigation