Skip to main content
Log in

Computer Modeling of N-Acetylglutamate Synthase: From Primary Structure to Elemental Stages of Catalysis

  • BIOCHEMISTRY, BIOPHYSICS, AND MOLECULAR BIOLOGY
  • Published:
Doklady Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Three-dimensional full-atom model of the enzyme complex with acetyl-CoA and substrate was constructed on the basis of the primary sequence of amino acid residues of N-acetyl glutamate synthase. Bioinformatics approaches of computer modeling were applied, including multiple sequence alignment, prediction of co-evolutionary contacts, and ab initio folding. On the basis of the results of calculations by classical molecular dynamics and combined quantum and molecular mechanics (QM/MM) methods, the structure of the active site and the reaction mechanism of N-acetylglutamate formation are described. Agreement of the structures of the enzyme–product complexes obtained in computer modeling and in the X-ray studies validates the reliability of modeling predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhou, X., Ma, Z., Dong, D., et al., Br. J. Pharmacol., 2013, vol. 169, no. 4, pp. 748–760. https://doi.org/10.1111/bph.12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bateman, A., Martin, M.-J., Orchard, S., et al., Nucleic Acids Res., 2019, vol. 47, no. D1, pp. D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  3. Shi, D., Sagar, V., Jin, Z., et al., J. Biol. Chem., 2008, vol. 283, no. 11, pp. 7176–7184. https://doi.org/10.1074/jbc.M707678200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eddy, S.R., Genome Inform., 2009, vol. 23, no. 1, pp. 205–211. https://doi.org/10.1142/9781848165632_0019

    Article  PubMed  Google Scholar 

  5. Sievers, F. and Higgins, D.G., Methods Mol. Biol., 2014, vol. 1079, pp. 105–116. https://doi.org/10.1007/978-1-62703-646-7_6

    Article  CAS  PubMed  Google Scholar 

  6. Li, Y., Hu, J., Zhang, C., et al., Bioinformatics, 2019, btz219. https://doi.org/10.1093/bioinformatics/btz291

  7. Adhikari, B., Bhattacharya, D., Cao, R., et al., Proteins Struct. Funct., 2015, vol. 83, no. 8, pp. 1436–1449. https://doi.org/10.1002/prot.24829

    Article  CAS  Google Scholar 

  8. Ovchinnikov, S., Park, H., Varghese, N., et al., Science, 2017, vol. 355, no. 6322, pp. 294–298. https://doi.org/10.1126/science.aah4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, H., Ovchinnikov, S., Kim, D.E., et al., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, no. 12, pp. 3054–3059. https://doi.org/10.1073/pnas.1719115115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Phillips, J.C., Braun, R., Wang, W., et al., J. Comput. Chem., 2005, vol. 26, no. 16, pp. 1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Best, R.B., Zhu, X., Shim, J., et al., J. Chem. Theory Comput., 2012, vol. 8, no. 9, pp. 3257–3273. https://doi.org/10.1021/ct300400x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feig, M., Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, vol. 7, no. 3. e1307. https://doi.org/10.1002/wcms.1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valiev, M., Bylaska, E.J., Govind, N., et al., Comput. Phys. Commun., 2010, vol. 181, no. 9, pp. 1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  14. Kots, E.D., Khrenova, M.G., Nemukhin, A.V., et al., Russ. Chem. Rev., 2019, vol. 88, no. 1, pp. 1–26. https://doi.org/10.1070/RCR4842

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Ultra-High Performance Computing Resources Core Facility of Moscow State University, as well as the supercomputer center of the Russian Academy of Sciences. We are grateful to Ph.D. A.K. Shaitan for a helpful discussion of this work.

Funding

The study was supported by the Russian Science Foundation (project no. 18-13-00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Polyakov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, I.V., Kniga, A.E., Grigorenko, B.L. et al. Computer Modeling of N-Acetylglutamate Synthase: From Primary Structure to Elemental Stages of Catalysis. Dokl Biochem Biophys 495, 334–337 (2020). https://doi.org/10.1134/S1607672920060125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1607672920060125

Keywords:

Navigation