Skip to main content
Log in

Parametric Resonance of a Charged Pendulum with a Suspension Point Oscillating Between Two Vertical Charged Lines

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In this study, we analyze a planar mathematical pendulum with a suspension point that oscillates harmonically in the vertical direction. The bob of the pendulum is electrically charged and is located between two wires with a uniform distribution of electric charges, both equidistant from the suspension point. The dynamics of this phenomenon is investigated. The system has three parameters, and we analyze the parametric stability of the equilibrium points, determining surfaces that separate the regions of stability and instability in the parameter space. In the case where the parameter associated with the charges is equal to zero, we obtain boundary curves that separate the regions of stability and instability for the Mathieu equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Araujo, G. C. and Cabral, H. E., Parametric Stability in a \(P+2\)-Body Problem, J. Dynam. Differential Equations, 2018, vol. 30, no. 2, pp. 719–742.

    Article  MathSciNet  MATH  Google Scholar 

  2. Araujo, G. C. and Cabral, H. E., Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point, Regul. Chaotic Dyn., 2021, vol. 26, no. 1, pp. 39–60.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bardin, B. S. and Markeyev, A. P., The Stability of the Equilibrium of a Pendulum for Vertical Oscillations of the Point of Suspension, J. Appl. Math. Mech., 1995, vol. 59, no. 6, pp. 879–886; see also: Prikl. Mat. Mekh., 1995, vol. 59, no. 6, pp. 922-929.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabral, H. E. and Carvalho, A. C., Parametric Stability of a Charged Pendulum with Oscillating Suspension Point, J. Differential Equations, 2021, vol. 284, pp. 23–38.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabral, H. E. and Carvalho, A. C., Parametric Resonance in the Oscillations of a Charged Pendulum inside a Uniformly Charged Circular Ring, Russian J. Nonlinear Dyn., 2022, vol. 18, no. 4, pp. 513–526.

    MathSciNet  Google Scholar 

  6. Cabral, H. E. and Dias, L. B., Normal Forms and Stability of Hamiltonian Systems, New York: Springer, 2023.

    Google Scholar 

  7. Churkina, T. E., Stability of a Planar Resonance Satellite Motion under Spatial Perturbations, Mech. Solids, 2007, vol. 42, no. 4, pp. 507–516; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2007, vol. , no. 4, pp. 14-25.

    Article  Google Scholar 

  8. Dias, L. B. and Cabral, H. E., Parametric Stability in a Sitnikov-Like Restricted \(P\)-Body Problem, J. Dynam. Differential Equations, 2018, vol. 30, no. 1, pp. 81–92.

    Article  MathSciNet  MATH  Google Scholar 

  9. Formal’skii, A. M., Stabilization of an Inverted Pendulum with a Fixed or Movable Suspension Point, Dokl. Math., 2006, vol. 73, no. 1, pp. 152–156; see also: Dokl. Akad. Nauk, 2006, vol. 406, no. 2, pp. 175-179.

    Article  MATH  Google Scholar 

  10. Kamel, A. A., Expansion Formulae in Canonical Transformations Depending on a Small Parameter, Celestial Mech., 1969/70, vol. 1, pp. 190–199.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kholostova O. V., On Motions of a Pendulum with a Vibrating Suspension Point, Teor. Mekh., 2003, no. 24, pp. 157–167 (Russian).

    Google Scholar 

  12. Kholostova, O. V., On the Motions of a Double Pendulum with Vibrating Suspension Point, Mech. Solids, 2009, vol. 44, no. 2, pp. 184–197; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2009, vol. , no. 2, pp. 25-40.

    Article  Google Scholar 

  13. Kholostova, O. V., On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point, Mech. Solids, 2011, vol. 46, no. 4, pp. 508–518; see also: Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2011, vol. , no. 4, pp. 18-30.

    Article  Google Scholar 

  14. Madigan, C., Pendulum with a Moving Pivot, https://www.maplesoft.com/applications/Detail.aspx?id=4888 (2007).

  15. Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, Izhevsk: R&C Dynamics, Institute of Computer Science, 2009 (Russian).

    Google Scholar 

  16. Markeev, A. P., On One Special Case of Parametric Resonance in Problems of Celestial Mechanics, Astron. Lett., 2005, vol. 31, no. 5, pp. 350–356; see also: Pis’ma v Astron. Zh., 2005, vol. 31, no. 5, pp. 388-394.

    Article  Google Scholar 

  17. de Menezes Neto, J. L., Araujo, G. C., Pérez Rothen, Y., and Vidal, C., Parametric Stability of a Double Pendulum with Variable Length and with Its Center of Mass in an Elliptic Orbit, J. Geom. Mech., 2022, vol. 14, no. 3, pp. 381–408.

    Article  MathSciNet  MATH  Google Scholar 

  18. de Menezes Neto, J. L. and Cabral, H. E., Parametric Stability of a Pendulum with Variable Length in an Elliptic Orbit, Regul. Chaotic Dyn., 2020, vol. 25, no. 4, pp. 323–329.

    Article  MathSciNet  MATH  Google Scholar 

  19. Neishtadt, A. I. and Sheng, K., Bifurcations of Phase Portraits of Pendulum with Vibrating Suspension Point, Commun. Nonlinear Sci. Numer. Simul., 2017, vol. 47, pp. 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  20. Siegel, C. and Moser, J., Lectures on Celestial Mechanics, Grundlehren Math. Wiss., vol. 187, New York: Springer, 1971.

    Book  MATH  Google Scholar 

  21. Valeriano, L. R., Parametric Stability in Robe’s Problem, Regul. Chaotic Dyn., 2016, vol. 21, no. 1, pp. 126–135.

    Article  MathSciNet  MATH  Google Scholar 

  22. Yakubovich, V. A. and Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients: In 2 Vols., New York: Wiley, 1975.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor Hildeberto Cabral for useful discussions that contributed to the development of this work. We also thank the anonymous referees whose inquiries and comments greatly contributed to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adecarlos C. Carvalho or Gerson C. Araujo.

Additional information

MSC2010

37N05, 70H14, 70J40, 70J25

APPENDIX A. BOUNDARY SURFACES FOR THE EQUILIBRIUM $$P_{1}$$ WHEN $$N=4,5,6$$

Here, we present the boundary surface parameterizations for the \(P_{1}\) equilibrium associated with the resonances \(2\omega=N\), where \(N=4,5,6\). To do so, we use the Hamiltonian (3.7) with \(\omega_{0}^{2}=\frac{\mu}{4}+\alpha_{0}\).

  • For \(N=4\)

    $$\displaystyle\alpha=\frac{16-\mu}{4}+\frac{1}{30}\varepsilon^{2}+\frac{433}{216000}\varepsilon^{4}-\frac{5701}{170100000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}),$$
    (A.1)
    $$\displaystyle\alpha=\frac{16-\mu}{4}+\frac{1}{30}\varepsilon^{2}-\frac{317}{216000}\varepsilon^{4}+\frac{4799}{170100000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}).$$
    (A.2)
  • For \(N=5\)

    $$\alpha=\frac{25-\mu}{4}+\frac{1}{48}\varepsilon^{2}+\frac{11}{193536}\varepsilon^{4}\mp\frac{1}{18432}\varepsilon^{5}+\frac{37}{55738368}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}).$$
    (A.3)
  • For \(N=6\)

    $$\displaystyle\alpha=\frac{36-\mu}{4}+\frac{1}{70}\varepsilon^{2}+\frac{187}{10976000}\varepsilon^{4}+\frac{6743617}{5808499200000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}),$$
    (A.4)
    $$\displaystyle\alpha=\frac{36-\mu}{4}+\frac{1}{70}\varepsilon^{2}+\frac{187}{10976000}\varepsilon^{4}-\frac{5861633}{5808499200000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}).$$
    (A.5)

APPENDIX B. BOUNDARY SURFACES FOR THE EQUILIBRIUM $$P_{2}$$ WHEN $$N=4,5,6$$

Similarly to what was done for the equilibrium \(P_{1}\), we present the boundary surface parameterizations for the equilibrium \(P_{2}\) associated with the resonances \(2\omega=N\), where \(N=4,5,6\). In this case, we use the Hamiltonian (3.7) with \(\omega_{0}^{2}=\frac{\mu}{4}-\alpha_{0}\).

  • \(N=4\)

    $$\displaystyle\alpha=\frac{\mu-16}{4}-\frac{1}{30}\varepsilon^{2}-\frac{433}{216000}\varepsilon^{4}+\frac{5701}{170100000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}),$$
    (B.1)
    $$\displaystyle\alpha=\frac{\mu-16}{4}-\frac{1}{30}\varepsilon^{2}+\frac{317}{216000}\varepsilon^{4}-\frac{4799}{170100000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}).$$
    (B.2)
  • \(N=5\)

    $$\alpha=\frac{\mu-25}{4}-\frac{1}{48}\varepsilon^{2}-\frac{11}{193536}\varepsilon^{4}\mp\frac{1}{18432}\varepsilon^{5}-\frac{37}{55738368}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}).$$
    (B.3)
  • \(N=6\)

    $$\displaystyle\alpha=\frac{\mu-36}{4}-\frac{1}{70}\varepsilon^{2}-\frac{187}{10976000}\varepsilon^{4}-\frac{6743617}{5808499200000}\varepsilon^{6}+\mathcal{O}(\varepsilon^{7}),$$
    (B.4)
    $$\displaystyle\alpha=\frac{\mu-36}{4}-\frac{\varepsilon^{2}}{70}-\frac{187\varepsilon^{4}}{10976000}+\frac{5861633\varepsilon^{6}}{5808499200000}+\mathcal{O}(\varepsilon^{7}).$$
    (B.5)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A.C., Araujo, G.C. Parametric Resonance of a Charged Pendulum with a Suspension Point Oscillating Between Two Vertical Charged Lines. Regul. Chaot. Dyn. 28, 321–331 (2023). https://doi.org/10.1134/S156035472303005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S156035472303005X

Keywords

Navigation