Skip to main content
Log in

Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We introduce Smale A-homeomorphisms that include regular, semichaotic, chaotic, and superchaotic homeomorphisms of a topological \(n\)-manifold \(M^{n}\), \(n\geqslant 2\). Smale A-homeomorphisms contain axiom A diffeomorphisms (in short, A-diffeomorphisms) provided that \(M^{n}\) admits a smooth structure. Regular A-homeomorphisms contain all Morse – Smale diffeomorphisms, while semichaotic and chaotic A-homeomorphisms contain A-diffeomorphisms with trivial and nontrivial basic sets. Superchaotic A-homeomorphisms contain A-diffeomorphisms whose basic sets are nontrivial. The reason to consider Smale A-homeomorphisms instead of A-diffeomorphisms may be attributed to the fact that it is a good weakening of nonuniform hyperbolicity and pseudo-hyperbolicity, a subject which has already seen an immense number of applications.

We describe invariant sets that determine completely the dynamics of regular, semichaotic, and chaotic Smale A-homeomorphisms. This allows us to get necessary and sufficient conditions of conjugacy for these Smale A-homeomorphisms (in particular, for all Morse – Smale diffeomorphisms). We apply these necessary and sufficient conditions for structurally stable surface diffeomorphisms with an arbitrary number of expanding attractors. We also use these conditions to obtain a complete classification of Morse – Smale diffeomorphisms on projective-like manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Afraimovich, V. S. and Hsu, S.-B., Lectures on Chaotic Dynamical Systems, AMS/IP Stud. Adv. Math., vol. 28, Providence, R.I.: AMS, 2003.

    MATH  Google Scholar 

  2. Akin, E., The General Topology of Dynamical Systems, Grad. Stud. Math., vol. 1, Providence, R.I.: AMS, 1993.

    MATH  Google Scholar 

  3. Akin, E., Hurley, M., and Kennedy, J. A., Dynamics of Topologically Generic Homeomorphisms, Mem. Amer. Math. Soc., 2003, vol. 164, no. 783, 138 pp.

    MathSciNet  MATH  Google Scholar 

  4. Anosov, D. V., Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature, Proc. Steklov Inst. Math., 1967, vol. 90, pp. 1–235; see also: Tr. Mat. Inst. Steklova, 1967, vol. 90, pp. 3-210.

    MathSciNet  Google Scholar 

  5. Anosov, D. V., On a Class of Invariant Sets of Smooth Dynamical Systems, in Proc. of the 5th Internat. Conf. on Nonlinear Oscillations: Vol. 2, Kiev: Math. Inst. Ukrainian Acad. Sci., 1970, pp. 39–45 (Russian).

    Google Scholar 

  6. Anosov, D. V. and Zhuzhoma, E. V., Nonlocal Asymptotic Behavior of Curves and Leaves of Laminations on Universal Coverings, Proc. Steklov Inst. Math., 2005, no. 2(249), pp. 1–219; see also: Tr. Mat. Inst. Steklova, 2005, vol. 249, no. , pp. 3-239.

    MathSciNet  MATH  Google Scholar 

  7. Aranson, S. Kh., Belitsky, G. R., and Zhuzhoma, E. V., Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Transl. Math. Monogr., vol. 153, Providence, R.I.: AMS, 1996.

    MATH  Google Scholar 

  8. Jiang, B., Ni, Y., and Wang, Sh., 3-Manifolds That Admit Knotted Solenoids As Attractors, Trans. Amer. Math. Soc., 2004, vol. 356, no. 11, pp. 4371–4382.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bowen, R., Topological Entropy and Axiom A, in Global Analysis: Proc. Sympos. Pure Math.(Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 23–41.

    Chapter  Google Scholar 

  10. Daverman, R. J. and Venema, G. A., Embeddings in Manifolds, Grad. Stud. Math., vol. 106, Providence, R.I.: AMS, 2009.

    MATH  Google Scholar 

  11. Eells, J., Jr. and Kuiper, N. H., Manifolds Which Are Like Projective Planes, Inst. Hautes Études Sci. Publ. Math., 1962, vol. 14, pp. 5–46.

    Article  MathSciNet  MATH  Google Scholar 

  12. Franks, J., Anosov Diffeomorphisms, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 61–93.

    Chapter  Google Scholar 

  13. Grines, V., Medvedev, T., and Pochinka, O., Dynamical Systems on \(2\)- and \(3\)-Manifolds, Dev. Math., vol. 46, New York: Springer, 2016.

    Book  MATH  Google Scholar 

  14. Grines, V. Z., Gurevich, E. Ya., Zhuzhoma, E. V., and Pochinka, O. V., Classification of Morse – Smale Systems and the Topological Structure of Underlying Manifolds, Russian Math. Surveys, 2019, vol. 74, no. 1, pp. 37–110; see also: Uspekhi Mat. Nauk, 2019, vol. 74, no. 1(445), pp. 41-116.

    Article  MathSciNet  MATH  Google Scholar 

  15. Grines, V., Medvedev, T., Pochinka, O., and Zhuzhoma, E., On Heteroclinic Separators of Magnetic Fields in Electrically Conducting Fluids, Phys. D, 2015, vol. 294, pp. 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grines, V. Z. and Zhuzhoma, E. V., The Topological Classification of Orientable Attractors on an \(n\)-Dimensional Torus, Russian Math. Surveys, 1979, vol. 34, no. 4, pp. 163–164; see also: Uspekhi Mat. Nauk, 1979, vol. 34, no. 4, pp. 185-186.

    Article  MathSciNet  MATH  Google Scholar 

  17. Grines, V. and Zhuzhoma, E., On Structurally Stable Diffeomorphisms with Codimension One Expanding Attractors, Trans. Amer. Math. Soc., 2005, vol. 357, no. 2, pp. 617–667.

    Article  MathSciNet  MATH  Google Scholar 

  18. Grobman, D. M., Homeomorphism of Systems of Differential Equations, Dokl. Akad. Nauk SSSR, 1959, vol. 128, no. 5, pp. 880–881 (Russian).

    MathSciNet  MATH  Google Scholar 

  19. Grobman, D. M., Topological Classification of Neighborhoods of a Singularity in \(n\)-Space, Mat. Sb. (N. S.), 1962, vol. 56(98), pp. 77–94 (Russian).

    MathSciNet  Google Scholar 

  20. Haefliger, A., Plongements différentiable de variétés dans variétés, Comment. Math. Helv., 1961/1962, vol. 36, pp. 47–82.

    Article  MATH  Google Scholar 

  21. Hartman, Ph., On the Local Linearization of Differential Equations, Proc. Amer. Math. Soc., 1963, vol. 14, no. 4, pp. 568–573.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirsch, M. W., Differential Topology, Grad. Texts in Math., vol. 33, New York: Springer, 1976.

    MATH  Google Scholar 

  23. Hirsch, M. W. and Pugh, C. C., Stable Manifolds and Hyperbolic Sets, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 133–163.

    Chapter  Google Scholar 

  24. Hirsch, M. W., Pugh, C. C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, New York: Springer, 1977.

    MATH  Google Scholar 

  25. Ma, J. and Yu, B., The Realization of Smale Solenoid Type Attractors in \(3\)-Manifolds, Topology Appl., 2007, vol. 154, no. 17, pp. 3021–3031.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuznetsov, S. P., Example of a Physical System with a Hyperbolic Attractor of the Smale – Williams Type, Phys. Rev. Lett., 2005, vol. 95, no. 14, 144101, 4 pp.

    Article  Google Scholar 

  27. Leontovich, E. A. and Mayer, A. G., On Trajectories Determining Qualitative Structure of Sphere Partition into Trajectories, Dokl. Akad. Nauk SSSR, 1937, vol. 14, no. 5, pp. 251–257 (Russian).

    Google Scholar 

  28. Leontovich, E. A. and Maier, A. G., On a Scheme Determining the Topological Structure of a Decomposition into Trajectories, Dokl. Akad. Nauk SSSR, 1955, vol. 103, no. 4, pp. 557–560 (Russian).

  29. Mañé, R., A Proof of the \(C^{1}\) Stability Conjecture, Publ. Math. Inst. Hautes Études Sci., 1987, vol. 66, pp. 161–210.

    Article  MATH  Google Scholar 

  30. Manning, A., There Are No New Anosov Diffeomorphisms on Tori, Amer. J. Math., 1974, vol. 96, no. 3, pp. 422–429.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhuzhoma, E. V. and Medvedev, V. S., Global Dynamics of Morse – Smale Systems, Proc. Steklov Inst. Math., 2008, vol. 261, no. 1, pp. 112–135; see also: Tr. Mat. Inst. Steklova, 2008, vol. 261, pp. 115-139.

    Article  MathSciNet  MATH  Google Scholar 

  32. Medvedev, V. S. and Zhuzhoma, E. V., Morse – Smale Systems with Few Non-Wandering Points, Topology Appl., 2013, vol. 160, no. 3, pp. 498–507.

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhuzhoma, E. V. and Medvedev, V. S., Continuous Morse – Smale Flows with Three Equilibrium Positions, Sb. Math., 2016, vol. 207, no. 5, pp. 702–723; see also: Mat. Sb., 2016, vol. 207, no. 5, pp. 69-92.

    Article  MathSciNet  MATH  Google Scholar 

  34. Medvedev, V. S. and Zhuzhoma, E. V., Two-Dimensional Attractors of A-Flows and Fibered Links on Three-Manifolds, Nonlinearity, 2022, vol. 35, no. 5, pp. 2192–2205.

    Article  MathSciNet  MATH  Google Scholar 

  35. Milnor, J., On Manifolds Homeomorphic to the \(7\)-Sphere, Ann. of Math. (2), 1956, vol. 64, no. 2, pp. 399–405.

    Article  MathSciNet  MATH  Google Scholar 

  36. Newhouse, S., On Codimension One Anosov Diffeomorphisms, Amer. J. Math., 1970, vol. 92, no. 3, pp. 761–770.

    Article  MathSciNet  MATH  Google Scholar 

  37. Nikolaev, I. and Zhuzhoma, E., Flows on \(2\)-Dimensional Manifolds: An Overview, Lect. Notes in Math., vol. 1705, Berlin: Springer, 1999.

    Book  MATH  Google Scholar 

  38. Palis, J., On Morse – Smale Dynamical Systems, Topology, 1968, vol. 8, no. 4, pp. 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  39. Plykin, R. V., On the Geometry of Hyperbolic Attractors of Smooth Cascades, Russian Math. Surveys, 1984, vol. 39, no. 6, pp. 85–131; see also: Uspekhi Mat. Nauk, 1984, vol. 39, no. 6(240), pp. 75-113.

    Article  MathSciNet  MATH  Google Scholar 

  40. Poincaré, H., Sur les courbes définies par les équations différentielles: 4, J. Math. Pures Appl., 1886, vol. 2, pp. 151–218.

    MATH  Google Scholar 

  41. Pugh, C. C., On a Theorem of P. Hartman, Amer. J. Math., 1969, vol. 91, no. 2, pp. 363–367.

    Article  MathSciNet  MATH  Google Scholar 

  42. Pugh, C. C., Walker, R. B., and Wilson, F. W., Jr., On Morse – Smale Approximations: A Counterexample, J. Differential Equations, 1977, vol. 23, no. 1, pp. 173–182.

    Article  MathSciNet  MATH  Google Scholar 

  43. Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics, Chaos, 2nd ed., Stud. Adv. Math., vol. 28, Boca Raton, Fla.: CRC, 1998.

    Book  Google Scholar 

  44. Robinson, C. and Williams, R., Finite Stability Is Not Generic, in Proc. of Symp. on Dynamical Systems(Brazil, 1971), M. M. Peixoto (Ed.), New York: Acad. Press, 1973, pp. 451–462.

    Chapter  Google Scholar 

  45. Smale, S., Morse Inequalities for a Dynamical System, Bull. Amer. Math. Soc., 1960, vol. 66, pp. 43–49.

    Article  MathSciNet  MATH  Google Scholar 

  46. Smale, S., Differentiable Dynamical Systems, Bull. Amer. Math. Soc., 1967, vol. 73, no. 6, pp. 747–817.

    Article  MathSciNet  MATH  Google Scholar 

  47. Strogatz, S., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed., Boca Raton, Fla.: CRC, 2015.

    MATH  Google Scholar 

  48. Williams, R. F., The “DA” Maps of Smale and Structural Stability, in Global Analysis: Proc. Sympos. Pure Math. (Berkeley, Calif., 1968): Vol. 14, Providence, R.I.: AMS, 1970, pp. 329–334.

    Chapter  Google Scholar 

  49. Williams, R. F., Expanding Attractors, Inst. Hautes Études Sci. Publ. Math., 1974, vol. 43, pp. 169–203.

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhuzhoma, E. V. and Isaenkova, N. V., On Zero-Dimensional Solenoidal Basic Sets, Sb. Math., 2011, vol. 202, no. 3–4, pp. 351–372; see also: Mat. Sb., 2011, vol. 202, no. 3–4, pp. 47-68.

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhuzhoma, E. V. and Medvedev, V. S., Necessary and Sufficient Conditions for the Conjugacy of Smale Regular Homeomorphisms, Sb. Math., 2021, vol. 212, no. 1, pp. 57–69; see also: Mat. Sb., 2021, vol. 212, no. 1, pp. 63-77.

    Article  MathSciNet  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the unknown reviewers for very useful remarks which improved the text.

Funding

This work was supported by the Laboratory of Dynamical Systems and Applications of the National Research University Higher School of Economics of the Ministry of Science and Higher Education of the RF, grant ag. no. 075-15-2019-1931.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladislav S. Medvedev or Evgeny V. Zhuzhoma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of A. M. Stepin

MSC2010

37D05, 37B35

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, V.S., Zhuzhoma, E.V. Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms. Regul. Chaot. Dyn. 28, 131–147 (2023). https://doi.org/10.1134/S1560354723020016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723020016

Keywords

Navigation