Skip to main content
Log in

Heteroclinic Transition Motions in Periodic Perturbations of Conservative Systems with an Application to Forced Rigid Body Dynamics

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

We consider periodic perturbations of conservative systems. The unperturbed systems are assumed to have two nonhyperbolic equilibria connected by a heteroclinic orbit on each level set of conservative quantities. These equilibria construct two normally hyperbolic invariant manifolds in the unperturbed phase space, and by invariant manifold theory there exist two normally hyperbolic, locally invariant manifolds in the perturbed phase space. We extend Melnikov’s method to give a condition under which the stable and unstable manifolds of these locally invariant manifolds intersect transversely. Moreover, when the locally invariant manifolds consist of nonhyperbolic periodic orbits, we show that there can exist heteroclinic orbits connecting periodic orbits near the unperturbed equilibria on distinct level sets. This behavior can occur even when the two unperturbed equilibria on each level set coincide and have a homoclinic orbit. In addition, it yields transition motions between neighborhoods of very distant periodic orbits, which are similar to Arnold diffusion for three or more degree of freedom Hamiltonian systems possessing a sequence of heteroclinic orbits to invariant tori, if there exists a sequence of heteroclinic orbits connecting periodic orbits successively.We illustrate our theory for rotational motions of a periodically forced rigid body. Numerical computations to support the theoretical results are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V. I., On the Nonstability of Dynamical Systems with Many Degrees of Freedom, Soviet Math. Dokl., 1964, vol. 5, no. 3, pp. 581–585 see also: Dokl. Akad. Nauk SSSR, 1964, vol. 156, no. 1, pp. 9–12

    Google Scholar 

  2. Bouabdallah, S., Murrieri, P., and Siegwart, R., Design and Control of an Indoor Micro Quadrotor, in IEEE Internat. Conf. on Robotics and Automation (ICRA’04, New Orleans, La., 26 Apr–1 May 2004), pp. 4393–4396.

    Google Scholar 

  3. Coddington, E. A. and Levinson, N., Theory of Ordinary Differential Equations, New York: McGraw-Hill, 1955.

    MATH  Google Scholar 

  4. Doedel, E. and Oldeman, B.E., AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, available online from https://doi.org/cmvl.cs.concordia.ca/auto (2012).

    Google Scholar 

  5. Eldering, J., Normally Hyperbolic Invariant Manifolds: The Noncompact Case, Paris: Atlantis, 2013.

    Book  MATH  Google Scholar 

  6. Fenichel, N., Persistence and Smoothness of Invariant Manifolds for Flows, Indiana Univ. Math. J., 1971/1972, vol. 21, no. 3, pp. 193–226

    Article  MathSciNet  MATH  Google Scholar 

  7. Fenichel, N., Asymptotic Stability with Rate Conditions, Indiana Univ. Math. J., 1974, vol. 23, no. 12, pp. 1109–1137

    Article  MathSciNet  MATH  Google Scholar 

  8. Fenichel, N., Asymptotic Stability with Rate Conditions: 2, Indiana Univ. Math. J., 1977, vol. 26, no. 1, pp. 81–93

    Article  MathSciNet  MATH  Google Scholar 

  9. Gruendler, J., The Existence of Homoclinic Orbits and the Method of Melnikov for Systems in Rn, SIAM J. Math. Anal., 1985, vol. 16, no. 5, pp. 907–931

    Article  MathSciNet  MATH  Google Scholar 

  10. Gruendler, J., Homoclinic Solutions for Autonomous Dynamical Systems in Arbitrary Dimension, SIAM J. Math. Anal., 1992, vol. 23, no. 3, pp. 702–721

    Article  MathSciNet  MATH  Google Scholar 

  11. Guckenheimer, J. and Holmes, P.J., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York: Springer, 1983.

    Book  MATH  Google Scholar 

  12. Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: 1. Nonstiff Problems, 2nd ed., rev., Springer Series in Computational Mathematics, vol. 8, Berlin: Springer, 1993.

  13. Haller, G., Chaos near Resonance, Appl. Math. Sci., vol. 138, New York: Springer, 1999.

  14. Hamel, T., Mahony, R., Lozano, R., and Ostrowski, J., Dynamic Modelling and Configuration Stabilization for an X4-Flyer, IFAC Proceedings Volumes, 2002, vol. 35, no. 1, pp. 217–222

    Article  Google Scholar 

  15. Hirsch, M.W., Pugh, C.C., and Shub, M., Invariant Manifolds, Lecture Notes in Math., vol. 583, New York: Springer, 1977.

    Book  MATH  Google Scholar 

  16. Holmes, Ph. J. and Marsden, J. E., Horseshoes and Arnol’d Diffusion for Hamiltonian Systems on Lie Groups, Indiana Univ. Math. J., 1983, vol. 32, no. 2, pp. 273–309

    Article  MathSciNet  MATH  Google Scholar 

  17. Koiller, J., A Mechanical System with a “Wild” Horseshoe, J. Math. Phys., 1984, vol. 25, no. 5, pp. 1599–1604.

    Article  MathSciNet  MATH  Google Scholar 

  18. Krishnaprasad, P. S. and Marsden, J. E., Hamiltonian Structures and Stability for Rigid Bodies with Flexible Attachment, Arch. Rational Mech. Anal., 1987, vol. 98, no. 1, pp. 71–93

    Article  MathSciNet  MATH  Google Scholar 

  19. Palmer, K., Exponential Dichotomies and Transversal Homoclinic Points, J. Differential Equations, 1984, vol. 55, no. 2, pp. 225–256

    Article  MathSciNet  MATH  Google Scholar 

  20. Sakajo, T. and Yagasaki, K., Chaotic Motion of the N-Vortex Problem on a Sphere: 1. Saddle-Centers in Two-Degree-of-Freedom Hamiltonians, J. Nonlinear Sci., 2008, vol. 18, no. 5, pp. 485–525

    Article  MathSciNet  MATH  Google Scholar 

  21. Tabarrok, B. and Tong, X., Melnikov’s Method for Rigid Bodies Subject to Small Perturbation Torques, Arch. Appl. Mech., 1996, vol. 66, no. 4, pp. 215–230

    Article  MATH  Google Scholar 

  22. Van der Heijden, G. H. M. and Yagasaki, K., Horseshoes for the Nearly Symmetric Heavy Top, J. Appl. Math. Phys (ZAMP), 2014, vol. 65, no. 2, pp. 221–240

    Article  MathSciNet  MATH  Google Scholar 

  23. Wiggins, S., Global Bifurcations and Chaos: Analytical Methods, Appl. Math. Sci., vol. 73, New York: Springer, 1988.

  24. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Texts Appl. Math., vol. 2, New York: Springer, 2003.

  25. Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Appl. Math. Sci., vol. 105, New York: Springer, 1994.

  26. Yagasaki, K., Homoclinic and Heteroclinic Orbits to Invariant Tori in Multi-Degree-of-Freedom Hamiltonian Systems with Saddle-Centres, Nonlinearity, 2005, vol. 18, no. 3, pp. 1331–1350

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, R., Krishnaprasad, P. S., and Dayawans, W., Optimal Control of a Rigid Body with Two Oscillators, in Mechanics Days, W., F. Shadwick, P. S. Krishnaprasad, S. Perinkulam, and T. S. Ratiu (Eds.), Providence, R. I.: AMS, 1996, pp. 233–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagasaki, K. Heteroclinic Transition Motions in Periodic Perturbations of Conservative Systems with an Application to Forced Rigid Body Dynamics. Regul. Chaot. Dyn. 23, 438–457 (2018). https://doi.org/10.1134/S1560354718040056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354718040056

Keywords

MSC2010 numbers

Navigation