Skip to main content
Log in

Reactions of Initiation and Reinitiation in Polymerization Mediated by Organoborane–Oxygen Systems

  • Synthesis
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of initiation and reinitiation reactions in the polymerization of methyl methacrylate mediated by the ammonia–tripropylborane–oxygen and 2-isopropyl-2-boraadamantane–oxygen systems are studied by ESR spectroscopy using C-phenyl-N-tert-butylnitrone and 2-methyl-2-nitrosopropane as spin traps. It is shown that alkyl and alkoxyl radicals are the main initiating radicals and the rate of initiation is directly proportional to the concentration of oxygen. Two mechanisms of radical formation are valid in the postpolymerization of methyl methacrylate at room temperature under vacuum. The first one (which is predominant) is the decomposition of poly(methyl methacrylate)–boroxyl macromolecules, i.e., the reinitiation of polymerization; the second one (additional during the first 30 min of the process) is the decomposition of borane peroxide compounds accumulated during the stage of oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yu. Zaremski, E. S. Garina, M. E. Gurskii, and M. E. Bubnov, Polym. Sci., Ser. B 55 (5–6), 304 (2013).

    Article  CAS  Google Scholar 

  2. D. V. Ludin, Yu. L. Kuznetsova, and S. D. Zaitsev, Russ. J. Appl. Chem. 88 (2), 295 (2015).

    Article  CAS  Google Scholar 

  3. D. V. Ludin, Yu. L. Kuznetsova, I. D. Grishin, V. A. Kuropatov, and S. D. Zaitsev, Russ. Chem. Bull. 65 (7), 1859 (2016).

    Article  CAS  Google Scholar 

  4. V. A. Dodonov, R. V. Galkin, T. I. Starostina, Y. B. Malysheva, and V. A. Kuropatov, Dokl. Chem. 463 (1), 174 (2015).

    Article  CAS  Google Scholar 

  5. T. C. M. Chung, W. Janvikul, and H. L. Lu, J. Am. Chem. Soc. 118 (3), 705 (1996).

    Article  CAS  Google Scholar 

  6. A. C. Moran, N. V. Lebedeva, S. Richert, and M. D. E. Forbes, Appl. Magn. Reson. 41, 295 (2011).

    Article  CAS  Google Scholar 

  7. C. Olliver and P. Renaud, Chem. Rev. 101 (11), 3415 (2001).

    Article  Google Scholar 

  8. R. Rensch and H. Fribolin, Chem. Ber. 110, 2189 (1977).

    Article  CAS  Google Scholar 

  9. R. Hunschens, R. Rensch, and H. Fribolin, Chem. Ber. 114, 3581 (1981).

    Article  Google Scholar 

  10. N. L. Zutty and F. J. Welch, Org. Chem. 25, 861 (1960).

    Article  Google Scholar 

  11. R. L. Hansen and R. R. Hamann, J. Phys. Chem. 67, 2868 (1963).

    Article  CAS  Google Scholar 

  12. Z.-C. Zhang and T. C. M. Chung, Macromolecules 39 (16), 5187 (2006).

    Article  CAS  Google Scholar 

  13. A. G. Davies, D. G. Hare, and F. M. White, J. Chem. Soc. 1960, 1040 (1960).

    Article  Google Scholar 

  14. A. G. Davies, D. G. Hare, and F. M. White, J. Chem. Soc. 1961, 341 (1961).

    Article  Google Scholar 

  15. S. B. Mirviss, J. Am. Chem. Soc. 83 (14), 3051 (1961).

    Article  CAS  Google Scholar 

  16. D. Griller, K. U. Ingold, L. K. Patterson, J. C. Scaiano, and R. D. Small, J. Am. Chem. Soc. 101 (14), 3780 (1979).

    Article  CAS  Google Scholar 

  17. T. Sato, K. Hibino, N. Fukumura, and T. Otsu, Chem. Ind. 4 (15), 745 (1973).

    Google Scholar 

  18. A. G. Davis, D. Griller, and B. P. Roberts, J. Chem. Soc. 1971, 1823 (1971).

    Google Scholar 

  19. P. J. Krusic and J. K. Kochi, J. Am. Chem. Soc. 91 (14), 3938 (1969).

    Article  CAS  Google Scholar 

  20. M. Yu. Zaremski, D. V. Budanov, S. A. Romanov, A. V. Plutalova, E. S. Garina, V. B. Golubev, S. Yu. Erdyakov, M. E. Gurskii, and Yu. N. Bubnov, Polym. Sci., Ser. B 53 (1), 1 (2011).

    Article  CAS  Google Scholar 

  21. D. E. Bergbreiter and G. F. Xu, Macromolecules 28, 4756 (1995).

    Article  CAS  Google Scholar 

  22. S. Yu. Erdyakov, O. A. Melrnik, M. E. Gurskii, A. V. Ignatenko, and Ya. S. Vygodskii, Russ. Chem. Bull. 53, 2215 (2004).

    Article  CAS  Google Scholar 

  23. M. E. Gurskii, A. S. Shashkov, and B. M. Michailov, Russ. Chem. Bull. 2, 341 (1981).

    Google Scholar 

  24. G. R. Buettner, Free Radical Biol. Med. 3, 259 (1987).

    Article  CAS  Google Scholar 

  25. F. J. Welch, J. Polym. Sci. 61, 243 (1962).

    Article  CAS  Google Scholar 

  26. T. C. Chung, US Patent No. 6515088 B2 (2003).

    Google Scholar 

  27. T. C. Chung, US Patent No. 6420502 B1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Zaremskii.

Additional information

Original Russian Text © M.Yu. Zaremskii, V.V. Odintsova, A.V. Plutalova, M.E. Gurskii, Yu.N. Bubnov, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2018, Vol. 60, No. 2, pp. 123–133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaremskii, M.Y., Odintsova, V.V., Plutalova, A.V. et al. Reactions of Initiation and Reinitiation in Polymerization Mediated by Organoborane–Oxygen Systems. Polym. Sci. Ser. B 60, 162–171 (2018). https://doi.org/10.1134/S1560090418020082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090418020082

Navigation