Skip to main content
Log in

Synthesis and electrochemical properties of nanocomposites containing poly(3,6-bis(phenylamino)-2,5-dichlorobenzoquinone and multiwalled carbon nanotubes

  • Composites
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The method of synthesizing nanocomposites based on multiwalled carbon nanotubes and a new polymer poly(3,6-bis(phenylamino)-2,5-dichlorobenzoquinone) containing polyaniline chains with electroactive substituents in the N-position is developed, and the electrochemical properties of the composites are studied. The in situ oxidative polymerization of N-substituted aniline performed in the presence of multiwalled carbon nanotubes makes it possible to design an organized, effective structure of the conducting composite material with enhanced electrochemical capacity and stable capacity parameters during long cycling in protic (1 mol/L H2SO4) and aprotic (1 mol/L LiClO4 in propylene carbonate) electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smook, P. Kao, and A. Best, J. Power Sources 196, 1 (2011).

    Article  Google Scholar 

  2. S. Ghosh, T. Maiyalagan, and R. N. Basu, Nanoscale 8, 6921 (2016).

    Article  CAS  Google Scholar 

  3. S. Meer, A. Kausar, and T. Iqbal, Polym.-Plast. Technol. Eng. 55, 1416 (2016).

    Article  CAS  Google Scholar 

  4. V. S. S. Srikanth, G. V. Ramana, and P. S. Kumar, J. Nanosci. Nanotechnol. 16, 2418 (2016).

    Article  CAS  Google Scholar 

  5. J. E. Rigs, Z. X. Guo, D. L. Carroll, and Y. P. Sun, J. Am. Chem. Soc. 122, 5879 (2000).

    Article  Google Scholar 

  6. V. A. Gerasin, E. M. Antipov, V. V. Karbushev, V. G. Kulichikhin, G. P. Karpacheva, R. V. Talroze, and Y. V. Kudryavtsev, Russ. Chem. Rev. 82, 303 (2013).

    Article  Google Scholar 

  7. V. V. Abalyaeva and O. N. Efimov, ISJAEE, No. 12, 40 (2015).

    Google Scholar 

  8. V. V. Abalyaeva, G. V. Nikolaeva, and O. N. Efimov, Russ. J. Electrochem. 44 (7), 828 (2008).

    Article  CAS  Google Scholar 

  9. K. Lota, V. Khomenko, and E. Frackoviak, J. Phys. Chem. Solids 65, 295 (2004).

    Article  CAS  Google Scholar 

  10. L. I. Tkachenko, O. N. Efimov, I. V. Anoshkin, T. L. Kulova, O. S. Roshchupkina, Yu. M. Shul’ga, and N. K. Petrova, Russ. J. Electrochem. 45 (3), 296 (2009).

    Article  CAS  Google Scholar 

  11. E. V. Ovsyannikova, O. N. Efimov, E. P. Krinichnaya, and N. M. Alpatova, Russ. J. Electrochem. 43 (9), 1064 (2007).

    Article  CAS  Google Scholar 

  12. V. V. Abalyaeva, V. R. Bogatyrenko, I. V. Anoshkin, and O. N. Efimov, Polym. Sci., Ser. A 52 (4), 562 (2010).

    Google Scholar 

  13. D. D. Potphode, P. Sivaraman, S. P. Mishra, and M. Patri, Electrochim. Acta 155, 402 (2015).

    Article  CAS  Google Scholar 

  14. R. V. Salvatierra, G. Zitzer, S.-A. Savu, A. P. Alves, A. J. G. Zarbin, T. Chassé, M. B. Casu, and M. L. M. Rocco, Synth. Met. 203, 16 (2015).

    Article  CAS  Google Scholar 

  15. H. Zengin, W. Zhow, J. Jin, R. Czerw, D. W. Smith, L. Echegoyen, D. L. Carroll, S. H. Foulger, and S. Ballato, J. Adv. Mater. 14, 1480 (2002).

    Article  CAS  Google Scholar 

  16. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martines, J. M. Benoit, J. Schreiber, and O. Chauvet, Chem. Commun. 25, 1450 (2001).

    Article  Google Scholar 

  17. P. Yao, J. Xu, Y. Wang, and C. Zhu, J. Mater. Sci.: Mater. Electron. 20, 891 (2009).

    CAS  Google Scholar 

  18. P. Pieta, I. Obraztsov, F. O. Souza, and W. Kutner, ESC J. Solid State Sci. Technol. 2 (10), M3120 (2013).

  19. N. M. Alpatova, O. A. Semenikhin, E. V. Ovsyannikova, M. R. Erenburg, O. N. Efimov, M. Yu. Belov, and V. E. Kazarinov, Russ. J. Electrochem. 36 (9), 919 (2000).

    Article  CAS  Google Scholar 

  20. J. Stejskal, M. Exnerova, Z. Moravkova, M. Trchova, J. Hromadkova, and J. Prokes, Polym. Degrad. Stab. 97, 1026 (2012).

    Article  CAS  Google Scholar 

  21. R. Sivakumar and R. Saraswathi, Synth. Met. 138, 381 (2003).

    Article  CAS  Google Scholar 

  22. X.-G. Li, H.-J. Zhou, and M.-R. Huang, Polymer 46, 1523 (2005).

    Article  CAS  Google Scholar 

  23. B. P. S. Gautam, M. Srivatsava, R. L. Prasad, and R. A. Yadav, Spectrochim. Acta, Part A 129, 241 (2014).

    Article  CAS  Google Scholar 

  24. M. S. Refat, L. El-Zayat, and O. Z. Yesilel, Polyhedron 27, 475 (2008).

    Article  CAS  Google Scholar 

  25. M. S. Refat, O. B. Ibrahim, H. Al-Didamony, K. M. A. El-Noir, and L. El-Zayat, J. Saudi Chem. Soc. 16, 227 (2012).

    Article  CAS  Google Scholar 

  26. I. Sedenkova, E. N. Kohyushenko, J. Stejskal, M. Trchova, and J. Prokes, Synth. Met. 161, 1353 (2011).

    Article  CAS  Google Scholar 

  27. G.-W. Hwang, K.-Y. Wu, H.-T. Hua, and S.-A. Chen, Synth. Met. 92, 39 (1998).

    Article  CAS  Google Scholar 

  28. C. O. Sanches, C. J. Bustos, and D. A. Mac-L. Carey, Polym. Bull. 54, 263 (2005).

    Article  Google Scholar 

  29. L. Brozova, P. Holler, J. Kovarova, J. Stejskal, and M. Trchova, Polym. Degrad. Stab. 93, 592 (2008).

    Article  CAS  Google Scholar 

  30. N. V. Bhat, D. T. Seshadri, and R. S. Phadke, Synth. Met. 130, 185 (2002).

    Article  CAS  Google Scholar 

  31. L. C. Mariano, R. V. Salvatiera, C. E. Cava, M. Koehler, A. J. G. Zarbin, and L. S. Romam, J. Phys. Chem. C 118, 2481 (2014).

    Article  Google Scholar 

  32. N. Li, J. R. Green, and J. Wang, Chem. Phys. Lett. 447 (6–7), 241 (2007).

    Article  CAS  Google Scholar 

  33. T. Kiyoshi, H. Yuki, Y. Nashima, and S. Inazumu, Jpn. Anal. 20, 327 (1971).

    Article  Google Scholar 

  34. Z. D. Zujovic, L. Zhang, G. A. Bowmaker, P. A. Kilmartin, and J. Traves-Sejdic, Macromolecules 41 (9), 3125 (2008).

    Article  CAS  Google Scholar 

  35. S. S. Umare, M. M. Haque, M. C. Gupta, and H. G. Viswanath, J. Macromol. Sci., Part A: Pure Appl. Chem. 33 (10), 381 (1996).

    Article  Google Scholar 

  36. A. Saprigin, R. S. Kohlman, S. M. Long, K. R. Brenneman, A. J. Epstein, M. Angelopoulos, Y.-H. Liao, W. Zheng, and A. G. MacDiarmid, Synth. Met. 84, 767 (1997).

    Article  CAS  Google Scholar 

  37. K. S. Ryu, K. M. Kim, S.-G. Kang, G. J. Lee, J. Joo, and S. H. Chang, Synth. Met. 110, 213 (2000).

    Article  CAS  Google Scholar 

  38. C. K. Jeong, J. H. Jung, B. H. Kim, S. Y. Lee, D. E. Lee, S. H. Jang, K. S. Ryu, and J. Joo, Synth. Met. 117, 99 (2001).

    Article  CAS  Google Scholar 

  39. Y. Zhou, B. He, W. Zhou, J. Huang, X. Li, B. Wu, and H. Li, Electrochim. Acta 49 (2), 257 (2004).

    Article  CAS  Google Scholar 

  40. N. Gupta and H. Linschitz, J. Am. Chem. Soc. 119, 6384 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kiseleva.

Additional information

Original Russian Text © V.V. Abalyaeva, L.I. Tkachenko, G.V. Nikolaeva, A.V. Orlov, S.G. Kiseleva, O.N. Efimov, G.P. Karpacheva, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya B, 2017, Vol. 59, No. 4, pp. 299–312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalyaeva, V.V., Tkachenko, L.I., Nikolaeva, G.V. et al. Synthesis and electrochemical properties of nanocomposites containing poly(3,6-bis(phenylamino)-2,5-dichlorobenzoquinone and multiwalled carbon nanotubes. Polym. Sci. Ser. B 59, 459–471 (2017). https://doi.org/10.1134/S1560090417040017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090417040017

Navigation