Skip to main content
Log in

Synthesis of poly(lactic acid) and the formation of poly(lactic acid)-based supraporous biofunctional materials for tissue engineering

  • Synthesis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

A multistage method for the creation of biodegradable matrices (scaffolds) supporting the growth of cells and useful for tissue engineering is described. Data on the synthesis of poly(lactic acid) and its properties are presented and discussed, and a strategy for the formation of supraporous biodegradable materials with surfaces modified with biological ligands is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Patel, M. Bonde, and G. Srinivasan, Trends Biomater. Artif. Organ 25 (1), 20 (2011).

    Google Scholar 

  2. R. D. Bostrom and A. D. Mikos, in Synthetic Biodegradable Polymer Scaffolds, Ed. by A. Atala and D. J. Mooney (Birkhauser, Berlin, 1997), p. 215.

  3. Principles of Regenerative Medicine, Ed. by A. Atala, R. Lanza, R. Nerem, and J. A. Thomson (Acad. Press, San Diego, 2011).

    Google Scholar 

  4. G. N. Bancroft and A. G. Mikos, in Tissue Engineering for Therapeutic Use, Ed. by Y. Ikada and N. Oshima (Elsevier, New York, 2001), p. 151.

  5. Scaffolding in Tissue Engineering, Ed. by P. Ma and J. Elisseeff (CRC Taylor&Francis, London; New York; 2006).

    Google Scholar 

  6. H. Zhou, J. G. Lawrence, and S. B. Bhaduri, Acta Biomater 8 (6), 1999 (2012).

    Article  CAS  Google Scholar 

  7. Biomaterials, Artificial Organs and Tissue Engineering, Ed. by L. L. Hench and J. R. Jones (CRC Press, Boca Raton, 2005).

    Google Scholar 

  8. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications, Ed. by R. Auras, L.-T. Lim, S. E. M. Selke, and H. Tsuji (Wiley, Hoboken, 2010).

    Google Scholar 

  9. M. S. Lopes, A. L. Jardini, and R. M. Filho, Procedia Eng. 42, 1402 (2012).

    Article  Google Scholar 

  10. J.-S. Chen, S.-L. Tu, and R.-Y. Tsay, J. Taiwan Inst. Chem. Eng. 41 (2), 229 (2010).

    Article  CAS  Google Scholar 

  11. P. Gentile, V. Chiono, I. Carmagnola, P. V. Hatton, Int. J. Mol. Sci 15 (3), 3640 (2014).

    Article  CAS  Google Scholar 

  12. S. M. Richardson, J. M. Curran, R. Chen, A. VaughanThomas, J. A. Hunt, A. J. Freemont, J. A. Hoyland, Biomaterial 27 (22), 4069 (2006).

    Article  CAS  Google Scholar 

  13. V. Salih, in Cellular Response To Biomaterials, Ed. by L. D. Silvio (Woodhead Publ., Cambridge, 2009), p. 185.

  14. M. S. Shoichet, Macromolecules 43, 581 (2010).

    Article  CAS  Google Scholar 

  15. A. P. Gupta and V. Kumar, Eur. Polym. J. 43, 4053 (2007).

    Article  CAS  Google Scholar 

  16. O. Dechy-Cabaret, B. Martin-Vaca, and D. Bourissou, Chem. Rev. 104, 6147 (2004).

    Article  CAS  Google Scholar 

  17. A. Kowalski, A. Duda, and S. Penczek, Macromolecule 33 (20), 7359 (2000).

    Article  CAS  Google Scholar 

  18. A. Kowalski, A. Duda, and S. Penczek, Macromolecule 33 (3), 689 (2000).

    Article  CAS  Google Scholar 

  19. X. Wang, K. Liao, D. Quan, and Q. Wu, Macromolecule 38 (11), 4611 (2005).

    Article  CAS  Google Scholar 

  20. R. Gowda and D. Chakraborty, J. Mol. Catal. A: Chem. 333 (1–2), 167 (2010).

    Article  CAS  Google Scholar 

  21. J.-C. Wu, B.-H. Huang, M.-L. Hsueh, S.-L. Lai, C.-C. Lin, Polymer 46, 9784 (2005).

    Article  CAS  Google Scholar 

  22. N. Maudoux, T. Roisnel, J.-F. Carpentier, and Y. Sarazin, Organometallic 33 (20), 5740 (2014).

    Article  CAS  Google Scholar 

  23. C. Zhang, Y. Li, W. Wang, N. Zhan, N. Xiao, S. Wang, Y. Li, Q. Yang, Eur. Polym. J 47 (12), 2228 (2011).

    Article  CAS  Google Scholar 

  24. T. M. Filion, A. Kutikov, and J. Song, Bioorg. Med. Chem. Lett 21 (17), 5067 (2011).

    Article  CAS  Google Scholar 

  25. C. Lao, C. Chen, J. Chen, S. Chiang, Y. Lin, K. Chang, J. Biomed. Mater. Res. 59, 676 (2002).

    Article  Google Scholar 

  26. T. D. Roy, J. L. Simon, J. L. Ricci, E. D. Rekow, V. P. Thompson, J. R. Parsosns, J. Biomed. Mater. Res., Part A 66A (2), 283 (2003).

    Article  CAS  Google Scholar 

  27. E. Nejati, H. Mirzadeh, and M. Zandi, Composites, Part 39 (10), 1589 (2008).

    Article  Google Scholar 

  28. Y. S. Nam and T. G. Park, J. Biomed. Mater. Res. 47 (1), 8 (1999).

    Article  CAS  Google Scholar 

  29. T. Matsumoto and J. D. Mooney, Adv. Biochem. Eng./Biotechnol. 102, 113 (2006).

    Article  CAS  Google Scholar 

  30. A. Gao, F. Liu, and L. Xue, J. Membr. Sci. 452, 390 (2014).

    Article  CAS  Google Scholar 

  31. S. Sarapirom, L. D. Yu, D. Boonyawan, and C. Chaiwong, Appl. Surf. Sci. 310, 42 (2014).

    Article  CAS  Google Scholar 

  32. C. Guo, M. Xiang, and Y. Dong, Mater. Lett. 140, 144 (2015).

    Article  CAS  Google Scholar 

  33. T. I. Croll, A. J. O’ Connor, G. W. Stevens, and J. J. Cooper-White, Biomacromolecule 5 (2), 463 (2004).

    Article  CAS  Google Scholar 

  34. A. M. Smith and A. H. Agiza, Analyst 76, 623 (1951).

    Article  CAS  Google Scholar 

  35. V. A. Korzhikov, S. Diederichs, O. V. Nazarova, E. G. Vlakh, C. Kasper, E. F. Panarin, T. B. Tennikova, J. Appl. Polym. Sci. 108 (4), 2386 (2008).

    Article  CAS  Google Scholar 

  36. R. Dawson, D. Elliott, W. Elliott, and K. Jones, Data for Biochemical Research, 3rd ed. (Clarendon Press, Oxford, 1986).

    Google Scholar 

  37. K. M. Stridsberg, M. Ryner, and A.-C. Albertsson, Adv. Polym. Sci. 157, 41 (2002).

    Article  CAS  Google Scholar 

  38. Y. A. Piskun, I. V. Vasilenko, S. V. Kostjuk, K. V. Zaitsev, G. S. Zaitseva, S. S. Karlov, J. Polym. Sci., Part A: Polym. Chem. 48, 1230 (2010).

    Article  CAS  Google Scholar 

  39. K. V. Zaitsev, Y. A. Piskun, Y. F. Oprunenko, S. S. Karlov, G. S. Zaitseva, I. V. Vasilenko, A. V. Churakov, S. V. Kostjuk, J. Polym. Sci., Part A: Polym. Chem. 52, 1237 (2014).

    Article  CAS  Google Scholar 

  40. J.-S. Chen, S.-L. Tu, and R.-Y. Tsay, J. Taiwan Inst. Chem. Eng. 41, 229 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Korzhikov.

Additional information

Original Russian Text © I.V. Averianov, V.A. Korzhikov, T.B. Tennikova, 2015, published in Russian in Vysokomolekulyarnye Soedineniya, Ser. B, 2015, Vol. 57, No. 4, pp. 281–294.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averianov, I.V., Korzhikov, V.A. & Tennikova, T.B. Synthesis of poly(lactic acid) and the formation of poly(lactic acid)-based supraporous biofunctional materials for tissue engineering. Polym. Sci. Ser. B 57, 336–348 (2015). https://doi.org/10.1134/S1560090415040016

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090415040016

Keywords

Navigation