Skip to main content
Log in

Atomic oxygen resistant phosphorus-containing copolyimides derived from bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide

  • Synthesis
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

Commercially available Kapton polyimide commonly used in various kinds of spacecrafts travelling in Low Earth Orbits (LEO) is severely degraded upon atomic oxygen (AO) exposure. An effective approach is to introduce the AO resistant component i.e., phenylphosphine oxide (PPO) in polymer. A series of copolyimide films has been successfully synthesized from random copolymerization of a PPO based monomer bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide (mBAPPO), 4,4′-diaminodiphenyl ether (4,4′-ODA) and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (sBPDA). The glass transition temperature (T g ) and mechanical properties were examined by differential scanning calorimetry and universal mechanical testing machine, respectively. The tensile strength, elongation, and T g of the copolyimide films decreased with the increase of PPO content. The effects of PPO content on the morphology and structure evolvement of copolyimide films were also studied. AO exposure tests were performed using a ground-based AO effects simulation facility. Phosphorus-containing polyimide composite films formed a layer of dense polyphosphate network on the PI film after AO exposure protecting the underlying polymers from further degradation. This layer decreased the mass loss rate and outstandingly improved the AO resistance of PI films. The results of all the studies indicate that these phosphorus-containing copolyimide films can achieve great potential as polymeric materials for potential space applications in LEO and a space durable replacement for Kapton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.-H. Zhao, Z.-G. Shen, Y.-S. Xing, and S.-L. Ma, Polym. Degrad. Stab. 88, 275 (2005).

    Article  CAS  Google Scholar 

  2. G. Bitetti, M. Marchetti, S. Mileti, F. Valente, and S. Scaglione, Acta Astronaut. 60, 166 (2007).

    Article  CAS  Google Scholar 

  3. F. Xiao, K. Wang, and M. S. Zhan, J. Mater. Sci. 47, 4904 (2012).

    Article  CAS  Google Scholar 

  4. J. W. Connell, J. G. Smith, and J. L. Hedrick, Polymer 36, 13 (1995).

    Article  CAS  Google Scholar 

  5. K. A. Watson, F. L. Palmieri, and J. W. Connell, Macromolecules 35, 4968 (2002).

    Article  CAS  Google Scholar 

  6. E. Grossman and I. Gouzman, Nucl. Instrum. Methods Phys. Res., Sect. B 208, 48 (2003).

    Article  CAS  Google Scholar 

  7. M. A. Golub, T. Wydeven, and R. D. Cormia, Polymer 30, 1571 (1989).

    Article  CAS  Google Scholar 

  8. M. Tagawa, K. Yokota, N. Ohmae, and H. Kinoshita, High Perform. Polym. 12, 53 (2000).

    Article  CAS  Google Scholar 

  9. H. Kinoshita, M. Umeno, M. Tagawa, and N. Ohmae, Surf. Sci. 440, 49 (1999).

    Article  CAS  Google Scholar 

  10. J. I. Kleiman, Y. I. Gudimenko, Z. A. Iskanderova, R. C. Tennyson, W. D. Morison, M. S. Mcintyre, and R. Davidson, Surf. Interface Anal. 23, 335 (1995).

    Article  CAS  Google Scholar 

  11. J. M. Zhang, D. J. Garton, and T. K. Minton, J. Chem. Phys. 117, 6239 (2002).

    Article  CAS  Google Scholar 

  12. H. R. Fischer, K. Tempelaars, A. Kerpershoek, T. Dingemans, M. Iqbal, H. Lonkhuyzen, B. Iwanowsky, and C. Semprimoschnig, ACS Appl. Mater. Interfaces 2, 2218 (2010).

    Article  CAS  Google Scholar 

  13. D. R. Dworak, B. A. Banks, C. A. Karniotis, and M. D. Soucek, J. Spacecraft Rockets 43, 393 (2006).

    Article  CAS  Google Scholar 

  14. X. Wang, X. H. Zhao, M. Z. Wang, and Z. G. Shen, Nucl. Instrum. Methods Phys. Res., Sect. B 243, 320 (2006).

    Article  CAS  Google Scholar 

  15. M. R. Reddy, N. Srinivasamurthy, and B. L. Agrawal, Surf. Coat. Technol. 58, 1 (1993).

    Article  CAS  Google Scholar 

  16. K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, Composites, Part B 31, 223 (2000).

    Article  Google Scholar 

  17. K. B. Shin, C. G. Kim, C. S. Hong, and H. H. Lee, Composites, Part B 32, 271 (2001).

    Article  Google Scholar 

  18. H. Shimamura and T. Nakamura, Polym. Degrad. Stab. 94, 1389 (2009).

    Article  CAS  Google Scholar 

  19. R. C. Tennyson, Surf. Coat. Technol. 68, 519 (1994).

    Article  Google Scholar 

  20. S. Packirisamy, D. Schwam, and M. H. Litt, J. Mater. Sci. 30, 308 (1995).

    Article  CAS  Google Scholar 

  21. T. Vlad-Bubulac, C. Hamciuc, O. Petreus, and M. Bruma, Polym. Adv. Technol. 17, 647 (2006).

    Article  CAS  Google Scholar 

  22. Y. Watanabe, Y. Sakai, Y. Shibasaki, S. Ando, M. Ueda, Y. Oishi, and K. Mori, Macromolecules 35, 2277 (2002).

    Article  CAS  Google Scholar 

  23. S. Wu, T. Hayakawa, R. Kikuchi, S. J. Grunzinger, and M. Kakimoto, Macromolecules 40, 5698 (2007).

    Article  CAS  Google Scholar 

  24. N. Moszner, I. Lamparth, J. Angermann, U. K. Fischer, F. Zeuner, T. Bock, R. Liska, and V. Rheinberger, Beilstein J. Org. Chem. 6, 26 (2010).

    Article  Google Scholar 

  25. H. Ren, J. Z. Sun, B. J. Wu, and Q. Y. Zhou, Polym. Degrad. Stab. 92, 956 (2007).

    Article  CAS  Google Scholar 

  26. Y. Zhu, P. Zhao, X. Cai, W.-D. Meng, and F.-L. Qing, Polymer 48, 3116 (2007).

    Article  CAS  Google Scholar 

  27. K. U. Jeong, J. J. Kim, and T. H. Yoon, Polymer 42, 6019 (2001).

    Article  CAS  Google Scholar 

  28. C. W. Lee, S. M. Kwak, and T. H. Yoon, Polymer 47, 4140 (2006).

    Article  CAS  Google Scholar 

  29. H. K. Shobha, H. Johnson, M. Sankarapandian, Y. S. Kim, P. Rangarajan, D. G. Baird, and J. E. McGrath, J. Polym. Sci., Part A: Polym. Chem. 39, 2904 (2001).

    Article  CAS  Google Scholar 

  30. J. Y. Jin, D. W. Smith, C. M. Topping, S. Suresh, S. R. Chen, S. H. Foulger, N. Rice, J. Nebo, and B. H. Mojazza, Macromolecules 36, 9000 (2003).

    Article  CAS  Google Scholar 

  31. C. D. Smith, H. Grubbs, H. F. Webster, A. Gungoumlr, J. P. Wightman, and J. E. McGrath, High Perform. Polym. 3, 211 (1991).

    Article  CAS  Google Scholar 

  32. J. W. Connell, J. G. Smith, and P. M. Hergenrother, Polymer 36, 5 (1995).

    Article  CAS  Google Scholar 

  33. J. G. Smith, J. W. Connell, and P. M. Hergenrother, Polymer 35, 2834 (1994).

    Article  CAS  Google Scholar 

  34. J. W. Connell, J. G. Smith, C. G. Kalil, and E. J. Siochi, Polym. Adv. Technol. 9, 11 (1998).

    Article  CAS  Google Scholar 

  35. J. G. Smith, C. M. Thompson, K. A. Watson, and J. W. Connell, High Perform. Polym. 14, 225 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Guo Dong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J.H., Gang, Z.X., Ming, L.Q. et al. Atomic oxygen resistant phosphorus-containing copolyimides derived from bis[4-(3-aminophenoxy)phenyl] phenylphosphine oxide. Polym. Sci. Ser. B 56, 788–798 (2014). https://doi.org/10.1134/S1560090414060086

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090414060086

Keywords

Navigation