Skip to main content
Log in

General features and specifics of the kinetics of the pseudoliving radical polymerization of 4-vinylpyridine and styrene mediated by TEMPO

  • Discussions
  • Published:
Polymer Science Series B Aims and scope Submit manuscript

Abstract

The kinetics of the pseudoliving radical polymerization of 4-vinylpyridine mediated by TEMPO is studied for the first time, and quantitative parameters characterizing the pseudoliving mechanism of the reaction, namely, the rate constant of reinitiation and the product of the equilibrium constant and the propagation-rate constant, are estimated. It is shown that the general kinetic features of the TEMPO-mediated polymerizations of 4-vinylpyridine and styrene (the pattern of kinetic curves and the zero reaction order with respect to the concentration of alkoxyamine) and the distinctive features of the polymerization of 4-vinylpyridine (an abnormally low rate and a high steady-state concentration of free TEMPO) are determined by three main factors: the rate of spontaneous initiation, the rate of self-termination of macroradicals, and the constant of equilibrium between active and dormant chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yu. Zaremski and V. B. Golubev, Polymer Science, Ser. C 43 (2001) [Vysokomol. Soedin., Ser. C 43, 1689 (2001)].

  2. M. Yu. Zaremski, Chen Xin, A. P. Orlova, V. B. Golubev, S. A. Kurochkin, and V. P. Grachev, Polymer Science, Ser. A 52 (2010) [Vysokomol. Soedin., Ser. A 52, 1650 (2010)].

  3. G. V. Korolev and A. P. Marchenko, Usp. Khim. 69, 447 (2000).

    Google Scholar 

  4. S. A. Kurochkin, V. P. Grachev, and G. V. Korolev, Polymer Science, Ser. A 49 (2007) [Vysokomol. Soedin., Ser. A 49, 593 (2007)].

    Google Scholar 

  5. A. Goto and T. Fukuda, Prog. Polym. Sci. 29, 329 (2004).

    Article  CAS  Google Scholar 

  6. J. Bonilla, E. Saldivar, A. Fliores-Tlacuahuac, et al., Polym. React. Eng. 10, 227 (2002).

    Article  CAS  Google Scholar 

  7. A. Fisher, A. Brembilla, and P. Lochou, Macromolecules 32, 6069 (1999).

    Article  Google Scholar 

  8. J. Bohrisch, U. Wendler, and W. Jaeger, Macromol. Rapid Commun. 18, 975 (1997).

    Article  CAS  Google Scholar 

  9. Zh. Chen, J. Cai, and X. Jiang, J. Appl. Polym. Sci. 86, 2687 (2002).

    Article  CAS  Google Scholar 

  10. M. Baumann and G. Schmidt-Naake, Macromol. Chem. Phys. 201, 2751 (2000).

    Article  CAS  Google Scholar 

  11. H. Fischer, Macromolecules 30, 5666 (1997).

    Article  CAS  Google Scholar 

  12. M. Souaille and H. Fischer, Macromolecules 33, 7378 (2000).

    Article  CAS  Google Scholar 

  13. V. A. Rabinovich and Z. Ya. Khavin, Abridged Chemical Handbook (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  14. G. V. Korolev, M. P. Berezin, G. M. Bakova, and I. S. Kochneva, Polymer Science, Ser. B 42 (2000) [Vysokomol. Soedin., Ser. B 42, 2190 (2000)].

    Google Scholar 

  15. M. Yu. Zaremski, Yu. I. Stoyachenko, A. V. Plutalova, et al., Polymer Science, Ser. A 41 (1999) [Vysokomol. Soedin., Ser. A 41, 389 (1999)].

  16. Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley, New York, 1989).

    Google Scholar 

  17. M. Yu. Zaremski, T. Yu. Baranova, M. B. Lachinov, and V. B. Golubev, Vestn. Mosk. Univ., Ser. 2: Khim. 43, 61 (2002).

    Google Scholar 

  18. Chen Xin, Candidate’s Dissertation in Chemistry (Moscow State Univ., Moscow, 2010).

  19. S. A. F. Bon, G. Chambard, F. A. C. Bergman, et al., Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 38, 748 (1997).

    CAS  Google Scholar 

  20. D. Greszta and K. Matyjaszewski, Macromolecules 29, 5239 (1996).

    Article  CAS  Google Scholar 

  21. W. Huang, R. Chiarelli, B. Charleux, et al., Macromolecules 35, 2305 (2002).

    Article  CAS  Google Scholar 

  22. Y. Guillaneuf, D. Gigmes, S. R. A. Marque, et al., Macromolecules 40, 3108 (2007).

    Article  CAS  Google Scholar 

  23. J. Nicolas, L. Mueller, C. Dire, et al., Macromolecules 42, 4470 (2009).

    Article  CAS  Google Scholar 

  24. P. Lacroix-Desmazes, J.-F. Lutz, F. Chauvin, et al., Macromolecules 34, 8866 (2001).

    Article  CAS  Google Scholar 

  25. G. T. Russel, Aust. J. Chem. 55, 399 (2002).

    Article  Google Scholar 

  26. Reactivity, Mechanism and Structure in Polymer Chemistry, Ed. by A. Jenkins and A. Ledwith (Wiley, London, 1974; Mir, Moscow, 1977).

    Google Scholar 

  27. D. Venoit, S. Grimaldi, S. Robin, et al., J. Am. Chem. Soc. 122, 5929 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Zaremski.

Additional information

Original Russian Text © M.Yu. Zaremski, Chen Xin, A.P. Orlova, I.V. Blagodatskikh, V.B. Golubev, 2011, published in Russian in Vysokomolekulyarnye Soedineniya, Ser. B, 2011, Vol. 53, No. 8, pp. 1474–1482.

This work was supported by the Russian Foundation for Basic Research, project no. 11-03-00640.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaremski, M.Y., Xin, C., Orlova, A.P. et al. General features and specifics of the kinetics of the pseudoliving radical polymerization of 4-vinylpyridine and styrene mediated by TEMPO. Polym. Sci. Ser. B 53, 476 (2011). https://doi.org/10.1134/S1560090411080069

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1134/S1560090411080069

Keywords

Navigation