Skip to main content
Log in

Polarization of Vavilov–Cherenkov Radiation in Violation of Axial Symmetry of the Process

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract—An analytical approach based on the polarization currents method is used to calculate the effect of the detector angular aperture on the vacuum Vavilov–Cherenkov radiation (VChR) polarization for an inclined dielectric plate. The simulation results show that an increase in the azimuthal detector aperture increases the VChR detection efficiency without average polarization degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. A. Cherenkov, “Visible fluorescence of pure liquids under the effects of radiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934), Usp. Fiz. Nauk 93, 385–388 (1967). https://doi.org/10.3367/UFNr.0093.196710n.0385

    Article  Google Scholar 

  2. Y. Takabayashi, E. I. Fiks, and Yu. L. Pivovarov, “First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal,” Phys. Lett. A 379, 1032–1035 (2015). https://doi.org/10.1016/j.physleta.2015.01.036

    Article  Google Scholar 

  3. S. Yu. Gogolev and A. P. Potylitsyn, “Azimuthal asymmetry of coherent Cherenkov radiation from a tilted bunch,” Phys. Lett. A 383, 888–893 (2019). https://doi.org/10.1016/j.physleta.2018.12.004

    Article  ADS  MATH  Google Scholar 

  4. A. P. Potylitsyn, G. Kube, A. Novokshonov, A. Vukolov, S. Gogolev, B. Alexeev, P. Klag, and W. Lauth, “First observation of quasi-monochromatic optical Cherenkov radiation in a dispersive medium (quartz),” Phys. Lett. A 417, 127680 (2021). https://doi.org/10.1016/j.physleta.2021.127680

    Article  Google Scholar 

  5. M. Shaikh, A. D. Lad, D. Sarkar, K. Jana, R. G. Kumar, and P. P. Rajeev, “Measuring the lifetime of intense-laser generated relativistic electrons in solids via gating their Cherenkov emission,” Rev. Sci. Inst. 90, 013301 (2019). https://doi.org/10.1063/1.5054785

    Article  ADS  Google Scholar 

  6. A. P. Potylitsyn, A. V. Vukolov, M. V. Shevelev, S. R. Uglov, B. A. Alekseev, A. G. Burachenko, Yu. M. Cherepennikov, S. K. Pavlov, and F. V. Konusov, “Monochromatic optical Cherenkov radiation of moderately relativistic ions in radiators with frequency dispersion, JETP Lett. 115, 439—443 (2022).

    Article  ADS  Google Scholar 

  7. T. Kudyakov, K. H. Finken, M. Jakubowski, M. Lehnen, Y. Xu, and O. Willi, “Spectral measurements of runaway electrons by a scanning probe in the TEXTOR tokamak,” Rev. Sci. Instrum. 79, 10F126 (2008). https://doi.org/10.1063/1.2953594

  8. M. J. Sadowski, “Generation and diagnostics of fast electrons within tokamak plasmas,” Nucleonika 56, 85–98 (2011).

    Google Scholar 

  9. I. E. Tamm, “General characteristics of radiation emitted by systems moving with superlight velocities with some applications to plasma physics,” Usp. Fiz. Nauk 68, 387–396 (1959). https://doi.org/10.3367/UFNr.0068.195907c.0387

    Article  Google Scholar 

  10. H. Geissel, H. Irnich, C. Kozhuharov, A. Magel, G. Munzenberg, F. Nickel, C. Scheidenberger, H.‑J. Schött, W. Schwab, T. Stöhlker, and B. Voss, “Investigation of possible applications of Cherenkov technique to measure average energy of beams of relativistic \(_{{79}}^{{197}}{\text{Au}}\) nuclei in energy range 0.64–0.99 GeV/u, Nucl. Instrum. Method Phys. Res., Sec. A 369, 23–28 (1996).

    Google Scholar 

  11. A. P. Potylitsyn and S. Yu. Gogolev, “Vavilov–Cherenkov radiation in an inclined dielectric plate and violation of azimuthal symmetry,” Phys. Part. Nucl. Lett. 16, 127–132 (2019). https://doi.org/10.1134/S1547477119020110

    Article  Google Scholar 

  12. D. V. Karlovets and A. P. Potylitsyn, “Diffraction radiation from a finite-conductivity screen,” JETP Lett. 90, 326–331 (2009). https://doi.org/10.1134/S0021364009170032

    Article  ADS  Google Scholar 

  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2017; Nauka, Moscow, 1973).

  14. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Fizmatlit, Moscow, 2003; Butterworth-Heinemann, 1980).

Download references

Funding

The study was carried out within the framework of the Priority-2030 Strategic Academic Leadership Program (no. Priority-2030-NIP/IZ-005-0000-2030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. P. Potylitsyn or S. Yu. Gogolev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potylitsyn, A.P., Gogolev, S.Y. Polarization of Vavilov–Cherenkov Radiation in Violation of Axial Symmetry of the Process. Phys. Part. Nuclei Lett. 20, 156–163 (2023). https://doi.org/10.1134/S1547477123020188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477123020188

Navigation