Skip to main content
Log in

Prototype of the Digital Electronics Chain for the GABRIELA Detector Assembly and First Tests

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This paper describes a digital electronics chain prototype for the GABRIELA detector assembly. The goal of the digital algorithm is to reduce the dead time of the electronics to tens of nanoseconds without loss of energy and time resolution. The structure and temporal diagrams of the algorithm are given in the text. The paper also shows the energy resolution of the algorithm in comparison with the existing analog system and the results of the first in beam run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. V. Yeremin, A. G. Popeko, O. N. Malyshev, A. V. Isaev, A. A. Kuznetsova, Y. A. Popov, A. I. Svirikhin, E. A. Sokol, M. S. Tezekbayeva, M. L. Chelnokov, V. I. Chepigin, A. Lopez-Martens, K. Hauschild, O. Dorvaux, B. Gall, et al., “Application of a double-sided stripped Si detector in the focal plane of the VASILISSA separator,” Instrum. Exp. Tech. 54, 37–42 (2011).

    Article  Google Scholar 

  2. A. V. Isaev, A. V. Yeremin, N. I. Zamyatin, A. N. Kuznetsov, O. N. Malyshev, A. I. Svirikhin, M. L. Chelnokov, V. I. Chepigin, K. Hauschild, A. Lopez-Martens, O. Dorvaux. Application of a double-sided stripped Si detector in the focal plane of the VASILISSA separator // Instrum Exp Tech. 2011. V. 54. P. 37–42.

  3. V. T. Jordanov, “Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding,” Nucl. Instrum. Methods Phys. Res., Sect. A 805, 63–71 (2016).

    Google Scholar 

  4. V. T. Jordanov, “Deconvolution of pulses from a detector amplifier configuration,” Nucl. Instrum. Methods Phys. Res., Sect. A 351, 592–594 (1994).

    Google Scholar 

  5. V. T. Jordanov, G. F. Knoll, A. C. Huber, and J. A. Pantazis, “Digital techniques for real-time pulse shaping in radiation measurements,” Nucl. Instrum. Methods Phys. Res., Sect. A 353, 261–264 (1994).

    Google Scholar 

  6. A. Georgiev and W. Gast, “Digital pulse processing in high-resolution, high-throughput, gamma-ray spectroscopy,” in Proceedings of the IEEE Conference on Nuclear Science Symposium and Medical Imaging (1992), Vol. 1, pp. 534–536.

  7. J. Stein, F. Scheuer, W. Gast, and A. Georgiev, “X-ray detectors with digitized preamplifiers,” Nucl. Instrum. Methods Phys. Res., Sect. B 113, 141–145 (1996).

    Google Scholar 

  8. P. Födisch, J. Wohsmann, B. Lange, J. Schönherr, W. Enghardt, and P. Kaever, “Digital high-pass filter deconvolution by means of an infinite impulse response filter,” Nucl. Instrum. Methods Phys. Res., Sect. A 830, 484–496 (2016). https://doi.org/10.1016/j.nima.2016.06.019

    Article  Google Scholar 

  9. A. Regadío, S. Sánchez-Prieto, M. Prieto, and J. Tabero, “Implementation of a real-time adaptive digital shaping for nuclear spectroscopy,” Nucl. Instrum. Methods Phys. Res., Sect. A 735, 297–303 (2014).

    Google Scholar 

  10. R. Chakma, K. Hauschild, A. Lopez-Martens, A. Yeremin, M. Oleg, A. Popeko, Y. Popov, A. Svirikhin, V. Chepigin, O. Dorvaux, B. Gall, and A. Che, “Gamma and conversion electron spectroscopy using GABRIELA,” Eur. Phys. J. A 56, 245 (2020).

    Article  ADS  Google Scholar 

  11. A. Andreyev, V. Bashevoy, D. Bogdanov, V. Chepigin, A. Kabachenko, O. Malyshev, J. Roháč, S. Saro, A. Taranenko, G. Ter-Akopian, and A. Yeremin, “Large area high-efficiency time-of-flight system for detection of low energy heavy evaporation residues at the electrostatic separator VASSILISSA,” Nucl. Instrum. Methods Phys. Res., Sect. A 364, 342–348 (1995).

    Google Scholar 

  12. J. Khuyagbaatar, A. Yakushev, C. Düllmann, D. Ackermann, L. L. Andersson, M. Block, H. Brand, D. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, R. D. Herzberg, F. Heßberger, J. Hoffmann, et al., “New short-lived isotope U 221 and the mass surface near N = 126,” Phys. Rev. Lett. 12, 115 (2015).

    Google Scholar 

  13. V. I. Stoica, “Digital pulse-shape analysis and controls for advanced detector systems,” Ph. D. Thesis (Victor Ionut Stoica, 2012). http://www.rug.nl/.

  14. H. David, J. Chen, D. Seweryniak, F. Kondev, J. Gates, K. Gregorich, I. Ahmad, M. Albers, M. Alcorta, B. Back, B. Baartman, P. Bertone, L. Bernstein, C. Campbell, M. Carpenter, et al., “Decay and fission hindrance of two- and four-quasiparticle K isomers in 254Rf,” Phys. Rev. Lett. 115, 132502 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The Russian Foundation for Basic Research (Grant no. 18-52-15004), JINR (Grant no. 21-502-09) and the French National Research Agency (project no. ANR-12-BS05-0013) funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mukhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhin, R.S., Yeremin, A.V., Izosimov, I.N. et al. Prototype of the Digital Electronics Chain for the GABRIELA Detector Assembly and First Tests. Phys. Part. Nuclei Lett. 18, 652–657 (2021). https://doi.org/10.1134/S154747712106008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S154747712106008X

Navigation