Skip to main content
Log in

Clustered DNA Double-Strand Breaks and Neuroradiobiological Effects of Accelerated Charged Particles

  • Radiobiology, Ecology and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The irradiation of brain structures with accelerated heavy charged particles during interplanetary flights or brain tumor therapy raises a number of questions regarding possible neurophysiological disorders in the central nervous system (CNS). Hardly repairable clustered DNA double-strand breaks apparently can have significant influence on the specifics of the development of radiation syndromes in the CNS after heavy charged particle exposure. The mechanisms of these disorders still remain unclear. Taking this into account, we have used immune cyto- and histochemistry techniques to study regularities of the formation of radiationinduced foci in human cell DNA in vitro and in rodent brain neurons in vivo after exposure to charged particles of different energies. It has been found that heavy charged particles induce clustered DNA damage in the genome of proliferating (human fibroblasts) and non-proliferating (Purkinje neurons) cells. We have suggested that changes in genetic structures can affect the conformation of the key proteins participating in neurophysiological processes and violate the normal functioning of the synaptic receptors. As an example, we have considered the action of double point mutations in the gene sequence encoding the proteins of the glutamate receptor NMDA. Using computer molecular dynamics techniques, we have revealed a twofold change in the conductance of the receptor’s ion channel, which incorporates mutant forms of the protein subunits NR2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. T. Goodhead, “Initial events in the cellular effects of ionizing radiations: clustered damage in DNA,” Int. J. Radiat. Biol. 65, 7–17 (1994).

    Article  Google Scholar 

  2. E. Sage and N. Shikazono, “Radiation-induced clustered DNA lesions: repair and mutagenesis,” Free Radic. Biol. Med. 107, 125–135 (2016).

    Article  Google Scholar 

  3. L. Jezkova, M. Zadneprianetc, E. Kulikova, E. Smirnova, T. Bulanova, D. Depes, I. Falkova, A. Boreyko, E. Krasavin, M. Davidkova, S. Kozubek, O. Valentova, and M. Falk, “Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci,” Nanoscale, 10, 1162–1179 (2018).

    Article  Google Scholar 

  4. R. A. Britten, L. K. Davis, A. M. Johnson, S. Keeney, A. Siegel, L. D. Sanford, S. J. Singletary, and G. Lonart, “Low (20 cGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats,” Radiat. Res. 177, 146–151 (2012).

    Article  ADS  Google Scholar 

  5. A. A. Besbach, V. B. Zager, G. Kaminski, A. I. Krylov, V. A. Krylov, Y. G. Teterev, and G. N. Timoshenko, “Upgrade of the “Genome” facility for radiobiological experiments at heavy ion beams,” Phys. Part. Nucl. Lett. 10, 175–178 (2013).

    Article  Google Scholar 

  6. M. Kozubek, P. Matula, P. Matula, and S. Kozubek, “Automated acquisition and processing of multidimensional image data in confocal in vivo microscopy,” Microsc. Res. Tech. 64, 164–175 (2004).

    Article  Google Scholar 

  7. UCSC Genome Browser Gateway. http://genome.ucsc.edu/cgi-bin/hgGateway?redirect=manual&source=genome.ucsc.edu.

  8. N. Tajima, E. Karakas, T. Grant, N. Simorowski, R. Diaz-Avalos, N. Grigorieff, and H. Furukawa, “Activation of NMDA receptors and the mechanism of inhibition by ifenprodil,” Nature (London, U.K.) 534, 63–68 (2016).

    Article  ADS  Google Scholar 

  9. A. Sali and T. L. Blundell, “Comparative protein modelling by satisfaction of spatial restraints,” J. Mol. Biol. 234, 779–815 (1993).

    Article  Google Scholar 

  10. J. Dai and H. Xi. Zhou, “An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions,” Biophys. J. 104, 2170–2181 (2013).

    Article  ADS  Google Scholar 

  11. H. Dong and H. X. Zhou, “Atomistic mechanism for the activation and desensitization of an AMPA-subtype glutamate receptor,” Nat. Commun. 2, 354 (2011).

    Article  Google Scholar 

  12. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26, 1781–1802 (2005).

    Article  Google Scholar 

  13. N. Burnashev and P. Szepetowski, “NMDA receptor subunit mutations in neurodevelopmental disorders,” Curr. Opin. Pharmacol. 20, 73–82 (2015).

    Article  Google Scholar 

  14. Solvate. Max Plank Institute for Biophysical Chemistry. www.mpibpc.mpg.de/grubmueller/solvate.

  15. W. Humphrey, A. Dalke, and K. Schulten, “VMD— visual molecular dynamics,” J. Mol. Graph. 14, 33–38 (1996).

    Article  Google Scholar 

  16. O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. Sansom, “HOLE: a program for the analysis of the pore dimensions of ion channel structural models,” J. Mol. Graph. 14, 354–360 (1996).

    Article  Google Scholar 

  17. L. Shi, M. M. Adams, A. Long, C. C. Carter, C. Bennett, W. E. Sonntag, M. M. Nicolle, M. Robbins, R. D’Agostino, and J. K. Brunso-Bechtold, “Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus,” Radiat. Res. 166, 892–899 (2006).

    Article  ADS  Google Scholar 

  18. M. Machida, G. Lonart, and R. A. Britten, “Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes,” Radiat. Res. 174, 618–623 (2010).

    Article  ADS  Google Scholar 

  19. R. Madabhushi, F. Gao, A. R. Pfenning, L. Pan, S. Yamakawa, J. Seo, R. Rueda, T. X. Phan, H. Yamakawa, P. C. Pao, R. T. Stott, E. Gjoneska, A. Nott, S. Cho, M. Kellis, and L. H. Tsai, “Activityinduced DNA breaks govern the expression of neuronal early-response genes,” Cell 161, 1592–1605 (2015).

    Article  Google Scholar 

  20. Y. Suzuki, T. A. Goetze, and J. M. Edwardson, “Visualization of structural changes accompanying activation of n-methyl-d-aspartate (NMDA) receptors using fastscan atomic force microscopy imaging,” J. Biol. Chem. 288, 778–784 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Boreyko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boreyko, A.V., Bugay, A.N., Bulanova, T.S. et al. Clustered DNA Double-Strand Breaks and Neuroradiobiological Effects of Accelerated Charged Particles. Phys. Part. Nuclei Lett. 15, 551–561 (2018). https://doi.org/10.1134/S1547477118050035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477118050035

Keywords

Navigation