Skip to main content
Log in

Nuclear relativistic technologies for energy production and utilization of spent nuclear fuel: Results of first experiments on substantiation of nuclear relativistic technologies

  • Radiobiology, Ecology, and Nuclear Medicine
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

A fundamentally new scheme of the electronuclear method based on nuclear relativistic technologies is discussed; this scheme includes the formation and utilization of a limiting hard neutron spectrum in the volume of the deep subcritical active core. It is demonstrated that the development and application of nuclear relativistic technologies can be promising for solving the problem of utilizing spent nuclear fuel and global challenges of power production. The results of the first experiments performed at the Joint Institute for Nuclear Research indicate the realistic character of the main principles of relativistic nuclear technologies, in particular, the growth of beam-power amplification by a factor of 2 for a deuteron beam irradiating a massive (315 kg) uranium target with the beam energy increasing from 1 to 4 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Barashenkov, “Nuclear Physical Aspectes of Electronuclear Method,” Sov. J. Part. Nucl. 9, 315 (1978).

    Google Scholar 

  2. R. G. Vasil’kov, V. I. Gol’danskii, and V. V. Orlov, “On Electrical Briding,” Sov. Phys. Usp. 26, 228 (1983).

    Article  ADS  Google Scholar 

  3. V. S. Barashenkov, “Problems of Electronuclear Technology,” Preprint No. OIYaI R2-94-56 (Dubna, 1994).

  4. N. Nifenecker et al., “Basic of Accelerator Driven Subcritical Reactors,” Nucl. Instrum. Methods Phys. Res. A 463, 428–467 (2001).

    Article  ADS  Google Scholar 

  5. Problems of Creation of Wide Scale Nuclear Energetics and Nuclear Relativistic Technologies (NRT). http://www.cftp-aem.ru/Data/RADS02.pdf

  6. M. V. Galanin et al., “Theoretical Principles of Relativistic Heavy Nuclei Energetics,” in Proceedings of the International Scientific Conference on Global Problems of Safety of Modern Energetics (Moscow, 2006), pp. 402–413.

  7. G. I. Marchuk, Numerical Methods of Nuclear Reactors Calculation (Atomizdat, Moscow, 1958) [in Russian].

    Google Scholar 

  8. V. I. Yurevich, “Neutron Production in pA and AA Collisions at Intermediate Energies,” Phys. Part. Nucl. 40, 49 (2009).

    Article  Google Scholar 

  9. R. G. Vasil’kov et al., “Neutron Multiplication in Uranium Bombarded by 300–660 MeV Protons,” At. Energ. 44, 329–335 (1978).

    Article  Google Scholar 

  10. V. S. Barashenkov, A. N. Sosnin, and S. Yu. Shmakov, “Dependence of Electronuclear Briding Characteristics from 239Pu and 235U Impurity,” Preprint No. OIYaI R2-91-422 (Dubna, 1991).

  11. V. S. Barashenkov, A. N. Sosnin, and S. Yu. Shmakov, “Temporal Dependence of Electronuclear System Characteristics (Effect of Distillation),” Preprint No. OIYaI R2-92-125 (Dubna, 1992).

  12. V. S. Barashenkov, A. N. Sosnin, and S. Yu. Shmakov, “Electronuclear Briding in Thorium Targets,” Preprint No. OIYaI R2-92-285 (Dubna, 1992).

  13. V. M. Gorbachev, Yu. S. Zamyatnin, and A. A. Lbov, Interaction of Emission with of Heavy Element Nuclei and Nuclear Fission, The Handbook (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  14. E. V. Gusev, P. A. Demchenko, and L. I. Nikolaichuk, “Subcritical Reactor with Combined Target Controlled by Proton Beam,” Vopr. Atom. Nauki Tekhn., No. 4, 27–39 (2004).

  15. A. Walter and A. Reinolds, Fast Breeder Reactors (Pergamon, Oxford, 1980; Energoatomizdat, Moscow, 1986).

    Google Scholar 

  16. V. I. Yurevich et al., “Investigation of Neutron Emission in the Interaction of Relativistic Protons and Deuterons with Lead Targets,” Phys. Part. Nucl. Lett. 3, 169 (2006).

    Article  Google Scholar 

  17. V. S. Barashenkov and V. D. Toneev, Interactions of High-Energy Particles and Nuclei with Nuclei (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  18. Relativistic Electronuclear Technologies are the Basis of Wide Scale Nuclear Energetics Creation (Conceptual Physical Technical Analysis). http://www.cftpaem.ru/Data/RADS01.pdf

  19. S. Andriamonje et al., “Experimental Determination of the Energy Generated in Nuclear Cascades by a High Energy Beam,” Phys. Lett. B 348, 697–709 (1995).

    Article  ADS  Google Scholar 

  20. V. F. Batyaev et al., “Analysis of Basic Nuclear Physical Features of Interaction of Proton Beams with Heavy Metallic Targets,” At. Energ. 104 242–249!! (2008).

    Google Scholar 

  21. W. Furman et al., “Time-Dependent Spectra of Neutrons Emitted by Interaction of 1 and 4 GeV Deuterons with Massive Natural Uranium and Lead Targets,” in Proceedings of the International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea, 2011, pp. 914–917.

  22. N. A. Gundorin et al., “Measurement of Delayed Neutron Yield from 237Np Fission Induced by Thermal Neutrons,” Phys. At. Nucl. 70, 975 (2007).

    Article  Google Scholar 

  23. I. Dostrovsky et al., “Cross Sections for Productions of 9Li, 16C and 17N in Irradiation with GeV-Energy Protons, Phys. Rev. B 139, 1513–1523 (1965).

    Article  ADS  Google Scholar 

  24. M. I. Krivopustov et al., “About the First Experiment on Calorimetry of Uranium Blancet on the Model of U/Pb-Assembly of Electronuclear Installation ‘Energy plus Transmutation’ on the Beam of JINR Synchrophasotron at Proton Energy 1.5 GeV,” Preprint No. OIYaI R1-2000-168 (Dubna, 2000).

  25. M. I. Êrivopustov et al., “About the First Experiment on Investigation of 129I, 237Np, 238Pu and 239Pu Transmutation at the Nuclotron 2.52 GeV Deuteron Beam in Neutron Field Generated in U/Pb-Assembly “Energy Plus Transmutation’,” JINR Preprint E1-2007-7 (Dubna, 2007).

  26. R. W. Waldo et al., “Delayed Neutron Yields: Time Dependent Measurements and a Predictive Model,” Phys. Rev. C 23, 1113–1127 (1981).

    Article  ADS  Google Scholar 

  27. L. Tomlinson, “Delayed Neutrons from Fission,” Rep. AERE-R 6993 (1972).

  28. C. B. Besant et al., “Absolute Yields and Group Constants of Delayed Neutrons in Fast Fission of 235U, 238U and 239Pu,” J. Br. Nucl. En. Soc. 16, 161–176 (1977).

    Google Scholar 

  29. H. Rose and R. D. Smith, “Delayed Neutron Investigations with the ZEPHYR Fast Reactor, Part II: The Delayed Neutrons Arising from Fast Fission in 235U, 233U, 238U, 239Pu and 232Th,” J. Nucl. Energy 4, 133–145 (1957).

    Google Scholar 

  30. S. G. Isaev, “Study of Delayed Neutrons Parameters in Neutron Induced Fission of Heavy Nuclei,” PhD Thesis (IPPE, Obninsk, 2001).

    Google Scholar 

  31. S. V. Korneev et al., “Restoration of Fast Neutron Spectrum in Subcritical Uranium-Lead Assembly of the “Energy Plus Transmutation” ADS Installation,” Proc. NAS Belarus. Phys. 1, 90–95 (2004).

    Google Scholar 

  32. V. M. Kolobashkin et al., Radiation Characteristics of Spent Nuclear Fuel (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  33. Status and Advanced in MOX Fuel Technology, Technical Reports Ser. No. 415 (IAEA, Vienna, 2003).

  34. V. V. Sorokin, Hydraulic and Heat Exchange of Ball Fillings in Conditions of Active Region of Aqueous-Aqueous Nuclear Reactors with Coated Fuel Particles (Belarus. nauka, Minsk, 2010) [in Russian].

    Google Scholar 

  35. V. I. Rachkov et al., The Efficiency of Nuclear Power Technologies. System Criteria and Directions of Development (TsNIIAtominform, Moscow, 2008) [in Russian].

    Google Scholar 

  36. J. Adam et al. (E&T — RAW Collab.), “Study of Deep Subcritical Electronuclear Systems and Feasibility of Their Application for Energy Production and Radioactive Waste Transmutation JINR Preprint No. E1-2010-61 (Dubna, 2010).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Baldin, E.M. Belov, M.V. Galanin, N.A. Gundorin, M.G. Kadykov, V.A. Kolesnikov, S.V. Korneev, B.A. Martsynkevich, A.D. Rogov, N.M. Ryazanskii, S.A. Solodchenkova, V.V. Sorokin, V.N. Sorokin, S.I. Tyutyunnikov, V.I. Furman, A.M. Khil’manovich, V.V. Chilap, A.V. Chinenov, 2011, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2011, No. 6(169), pp. 1007–1023.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldin, A.A., Belov, E.M., Galanin, M.V. et al. Nuclear relativistic technologies for energy production and utilization of spent nuclear fuel: Results of first experiments on substantiation of nuclear relativistic technologies. Phys. Part. Nuclei Lett. 8, 606–615 (2011). https://doi.org/10.1134/S1547477111060021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477111060021

Keywords

Navigation