Skip to main content
Log in

Effect of the composition and conditions of the synthesis of porous glass on their micro- and mesoporous structures

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Micro- and mesoporous substructures of porous glass (PG) obtained from two-phase alkali-borosilicate glass of various compositions as the result of their through acidic leaching under various conditions have been studied using equilibrium and kinetic adsorption and desorption methods. It has been determined that for all the studied PG samples multimodal mesopore size distribution (up to four modes) and micropores (up to three modes) is intrinsic. The effective diameters of the mesopores vary from 3 to 60 nm. The diameters of micropores vary within small ranges from 0.5 to 0.7 nm. It has been stated that micropores in PG mainly represent the ranges of the interglobular contacts of secondary silica with sizes of 1–2 diameters of the adsorbate molecule. It has been shown that varying the composition of the initial alkali-borosilicate glass by the additions of doping elements (lead, aluminum, fluorine, and phosphorus) and changing the temperature conditions of liquation, one can modify the parameters of the morphology of the pores and ratio between mesoporous and microporous substructures of PG in broad ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meshkovskii, I.K., Kompozitsionnye opticheskie materialy na osnove poristykh matrits (Composite Optical Materials Based on Porous Matrices), St. Petersburg: St. Petersburg National Research University of Information Technologies, Mechanics, and Optics (Technical University), 1998.

    Google Scholar 

  2. Reisfeld, R., Saraidarov, T., and Jasinska, B., Porous glasses as a matrix for incorporation of photonic materials: Pore determination by positron annihilation life-time spectroscopy, Opt. Mater., 2004, vol. 26, no. 2, pp. 181–189.

    Article  Google Scholar 

  3. Evstrapov, A.A., Esikova, N.A., Rudnitskaja, G.E., and Antropova, T.V., Application of porous glasses in microfluidic devices, Opt. Appl., 2008, vol. 38, no. 1, pp. 31–38.

    Google Scholar 

  4. Rybaltovskii, A.O., Zavorotnyi, Yu.S., Minaev, N.V., Samoilovich, M.I., Timashev, P.S., Tsvetkov, M.Yu., and Bagratashvili, V.N., Synthesis of silver nanocomposites by SCF impregnation of matrices of synthetic opal and Vycor glass by the Ag(hfac)COD precursor, Russ. J. Phys. Chem. B, 2009, vol. 3, no. 7, pp. 1106–1112.

    Article  Google Scholar 

  5. Aleksashkina, M.A., Venzel, B.I., and Svatovskaya, L.G., Application of porous glasses as matrices for nanocomposites, Glass Phys. Chem., 2005, vol. 31, no. 3, pp. 269–274.

    Article  Google Scholar 

  6. Zhu, D., Zhou, W., Day, D.E., and Ray, C.S., Preparation of fluorescent glasses with variable compositions, Ceram. Int., 2007, vol. 33, no. 4, pp. 563–568.

    Article  Google Scholar 

  7. Makowski, P., Deschanels, X., Grandjean, A., Meyer, D., Toquer, G., and Goettmann, F., Mesoporous materials in the field of nuclear industry: Applications and perspectives, New J. Chem., 2012, vol. 36, no. 3, pp. 531–541.

    Article  Google Scholar 

  8. Preising, H. and Enke, D., Relations between texture and transport properties in the primary pore system of catalyst supports, Colloids Surf., A, 2007, vol. 300, nos. 1–2, pp. 21–29.

    Article  Google Scholar 

  9. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: Struktura, svoistva, primenenie (Two-Phase Glasses: Structure, Properties, and Applications), Leningrad: Nauka, 1991.

    Google Scholar 

  10. Enke, D., Janowski, F., and Schwieger, W., Porous glasses in the 21st century—A short review, Microporous Mesoporous Mater., 2003, vol. 60, nos. 1–3, pp. 19–30.

    Article  Google Scholar 

  11. Antropova, T.V., Volkova, A.V., Petrov, D.V., Stolyar, S.V., Ermakova, L.E., Sidorova, M.P., Yakovlev, E.B., and Drozdova, I.A., Effect of structure parameters and composition of high-silica porous glasses on their thermal and radiation resistant properties, Opt. Appl., 2005, vol. 35, no. 4, pp. 717–723.

    Google Scholar 

  12. Antropova, T.V., Gordeeva, Yu.A., Ryzhikov, B.D., and Saletskii, A.M., Electronic excitation energy transfer between different types of dye molecules in a porous glass matrix, J. Appl. Spectrosc., 2005, vol. 72, no. 4, pp. 478–482.

    Article  Google Scholar 

  13. Gutina, A., Virnik, K., Feldman, Yu., Antropova, T., and Rysiakiewicz-Pasek, E., Dielectric relaxation in porous glasses, Microporous Mesoporous Mater., 2003, vol. 58, no. 3, pp. 237–254.

    Article  Google Scholar 

  14. Nanoporous Materials: Science and Engineering, Lu, G.Q. and Zhao, X.S., Eds., London: Imperial College Press, 2004, vol. 4.

    Google Scholar 

  15. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haines, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K., Recommendations for the characterization of porous solids, Pure Appl. Chem., 1994, vol. 66, no. 8, 1739–1758.

    Article  Google Scholar 

  16. Do, D.D., Adsorption Analysis: Equilibria and Kinetics (Series on Chemical Engineering), London: Imperial College Press, 1998, vol. 2.

    Google Scholar 

  17. Nguyen, C. and Do, D.D., A new method for the characterization of porous materials, Langmuir, 1999, vol. 15, no. 10, p. 3608–3615.

    Article  Google Scholar 

  18. Figueroa-Gerstenmaier, S., Avalos, J.B., Gelb, L.D., Gubbins, K.E., and Vega, L.F., Pore size distribution of porous glasses: A test of the independent pore model, Langmuir, 2003, vol. 19, no. 20, pp. 8592–8604.

    Article  Google Scholar 

  19. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Microporosity of porous glasses: New techniques of investigation, Glass Phys. Chem., 2003, vol. 29, no. 6, pp. 541–547.

    Article  Google Scholar 

  20. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Microporous substructure of porous glasses: Dynamic and equilibrium approaches, J. Porous Mater., 2005, vol. 12, no. 1, pp. 13–22.

    Article  Google Scholar 

  21. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Influence of the acid concentration on the morphology of micropores and mesopores in porous glasses, Glass Phys. Chem., 2006, vol. 32, no. 6, pp. 615–622.

    Article  Google Scholar 

  22. Gregg, S.J. and Sing, K.S., Adsorption, Surface Area, and Porosity, New York: Academic, 1982. Translated under the title Adsorbtsiya, udel’naya poverkhnost’, poristost’, Moscow: Mir, 1984.

    Google Scholar 

  23. Jaroniec, M., Kruk, M., and Olivier, J.P., Standard nitrogen adsorption data for characterization of nanoporous silicas, Langmuir, 1999, vol. 15, no. 16, pp. 5410–5413.

    Article  Google Scholar 

  24. Kreisberg, V.A., Rakcheev, V.P., and Antropova, T.V., Nanoporosity and surface morphology of glasses, Phys. Chem. Glasses (Proceedings of XIX International Congress on Glass, 2002), 2002, vol. 43C, pp. 55–58.

    Google Scholar 

  25. Kreisberg, V.A. and Rakcheev, V.P., Diffusion diagnostics of micro- and mesoporous structures of adsorbents, Vestn. Mosk. Univ., Ser. 2: Khim., 2000, vol. 41, no. 5, pp. 289–292.

    Google Scholar 

  26. Zhdanov, S.P., Genesis of sponge structures in porous glasses and possibilities of controlling their parameters, in Adsorbtsiya i poristost’ (Adsorption and Porosity), Moscow: Nauka, 1976, pp. 21–26.

    Google Scholar 

  27. Antropova, T.V. and Drozdova, I.A., The Influence of Synthesis Conditions of Porous Glasses on Their Structure, Glass Phys. Chem., 1995, vol. 21, no. 2, pp. 131–140.

    Google Scholar 

  28. Drozdova, I., Vasilevskaya, T., and Antropova, T., Structural transformation of secondary silica inside the porous glasses according to electron microscopy and small-angle X-ray scattering, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 2007, vol. 48, no. 3, pp. 142–146.

    Google Scholar 

  29. Antropova, T.V., Tsyganova, T.A., Roskova, G.P., Kostyreva, T.G., Polyakova, I.G., and Medvedeva, S.V., Some features of leaching of two-phase alkali borosilicate glass containing PbO, Glass Phys. Chem., 2001, vol. 27, no. 2, pp. 175–181.

    Article  Google Scholar 

  30. Tsyganova, T.A., Antropova, T.V., and Rakhimova, O.V., Influence of the composition of alkali borosilicate glass and leaching solution on the structure of nanoporous glasses, Glass Phys. Chem., 2008, vol. 34, no. 2, pp. 224–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kreisberg.

Additional information

Original Russian Text © V.A. Kreisberg, T.V. Antropova, S.V. Kalinina, 2014, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreisberg, V.A., Antropova, T.V. & Kalinina, S.V. Effect of the composition and conditions of the synthesis of porous glass on their micro- and mesoporous structures. Glass Phys Chem 40, 501–512 (2014). https://doi.org/10.1134/S1087659614050071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614050071

Keywords

Navigation