Skip to main content
Log in

The effect of gold nanoparticles on crystallization processes in photostructured lithium-silicate glass

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The surface plasmon resonance of gold nanoparticles (NP) is investigated, allowing their sizes before and after X-ray irradiation to be determined. It is shown that X-ray irradiation results in the growth of NP, while their heat treatment results in their reduction. The quasi-atomic structure of gold NP is assumed, leading to the entrapment of electrons on unoccupied orbitals upon X-ray irradiation. An explanation of the crystallization and amorphization of photostructured glass in the lithium-silicate system is suggested based on the fact that gold NP are negatively charged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sidorov, A.I., Double plasmon resonance in spherical metal-dielectric-metal nanostructures, Tech. Phys., 2006, vol. 51, no. 4, pp. 477–481.

    Article  CAS  Google Scholar 

  2. Jimenez, J.A., Sendova, M., and Liu, H., Evolution of the optical properties of a silver-doped phosphate glass during thermal treatment, J. Lumin., 2011, vol. 131, pp. 535–538.

    Article  CAS  Google Scholar 

  3. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer Series in Materials Science), Berlin: Springer-Verlag, 1995.

    Book  Google Scholar 

  4. Hayakawa, T., Selvan, S.T., and Nogami, M., Enhanced fluorescence from Eu3+ owing to surface plasma oscillations of silver particles in glass, J. Non-Cryst. Solids, 1999, vol. 259, pp. 16–22.

    Article  CAS  Google Scholar 

  5. Ryasnyanskiy, A.I., Palpant, B., Debrus, S., Pal, U., and Stepanov, A.L., Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices, Phys. Solid State, 2009, vol. 51, no. 1, pp. 55–60.

    Article  CAS  Google Scholar 

  6. Chakraborty, P., Metal nanoclusters in glasses as nonlinear photonic materials, J. Mater. Sci., 1998, vol. 33, no. 9, pp. 2235–2249.

    Article  CAS  Google Scholar 

  7. Dietrich, T.R., Ehrfeld, W., Lacher, M., Kramer, M., and Speit, B., Fabrication technologies for microsystems utilizing photoetchable glass, Microelectron. Eng., 1996, vol. 30, nos. 1–4, pp. 497–504.

    Article  CAS  Google Scholar 

  8. Stookey, S.D., Photosensitive glass, Ind. Eng. Chem., 1949, vol. 41, no. 4, pp. 856–861.

    Article  CAS  Google Scholar 

  9. Stookey, S.D., Coloration of glass by gold, silver, and copper, J. Am. Ceram. Soc., 1949, vol. 32, no. 8, pp. 246–249.

    Article  CAS  Google Scholar 

  10. Gurkovskii, E.V., Photosensitive glass, Legk. Prom-st., 1952, no. 7, pp. 36–37.

    Google Scholar 

  11. Stookey, S.D., Chemical machining of photosensitive glass, Ind. Eng. Chem., 1953, vol. 45, no. 1, pp. 115–118.

    Article  CAS  Google Scholar 

  12. Maurer, R.D., Nucleation and growth in a photosensitive glass, J. Appl. Phys., 1958, vol. 29, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  13. Stookey, S.D., Catalyzed crystallization of glass in theory and practice, Ind. Eng. Chem., 1959, vol. 51, no. 7, pp. 805–808.

    Article  CAS  Google Scholar 

  14. Berezhnoi, A.I., Sitally i fotositally (Glass Ceramics and Photoglass Ceramics), Moscow: Stroiizdat, 1981.

    Google Scholar 

  15. Pong, B.K., Elim, H.I., Chong, J.-X., Ji, W., Trout, B.L., and Lee, J.-Y., Enhanced fluorescence from Eu3+ owing to surface plasma oscillations of silver particles in glass, J. Phys. Chem. C, 2007, vol. 111, no. 17, pp. 6281–6287.

    Article  CAS  Google Scholar 

  16. Navarro, J.M.F. and Villegas, M.A., Preparation of gold ruby glasses by the solgel method, Glastech. Ber., 1992, vol. 65, no. 2, pp. 32–40.

    Google Scholar 

  17. Sycheva, G.A., Sol-gel synthesis of photostructured gold-containing lithium silicate glasses, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 496–504.

    Article  CAS  Google Scholar 

  18. Boiko, G.G., Sycheva, G.A., and Valyuk, L.G., Influence of the synthesis conditions on the kinetics of crystallization of the photosensitive lithium silicate glass, Fiz. Khim. Stekla, 1995, vol. 21, no. 1, pp. 65–74.

    Google Scholar 

  19. Alonco, J.A., Structure and Properties of Atomic Nanoclusters, London: Imperial College Press, 2005, p. 410. http://www.alibris.com/search/books/isbn/9781860945519.

    Book  Google Scholar 

  20. Taketoshi Kawai and Takeshi Hirai, Luminescence properties of KCl: Ag crystals excited near the fundamental absorption edge, J. Lumin., 2012, vol. 132, no. 2, pp. 513–516.

    Article  Google Scholar 

  21. Chapman, R. and Mulvaney, P., Electro-optical shifts in silver nanoparticle films, Chem. Phys. Lett., 2001, vol. 349, pp. 358–362.

    Article  CAS  Google Scholar 

  22. Sycheva, G.A., Golubkov, V.V., and Kostyreva, T.G., Effect of X-rays on crystal nucleation in photostructured glasses of a lithium-silicate system, Glass Phys. Chem., 2012, vol. 38, no. 2, pp. 201–205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Sycheva.

Additional information

Original Russian Text © D.A. Kochetkov, N.V. Nikonorov, G.A. Sycheva, V.A. Tsekhomskii, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetkov, D.A., Nikonorov, N.V., Sycheva, G.A. et al. The effect of gold nanoparticles on crystallization processes in photostructured lithium-silicate glass. Glass Phys Chem 39, 351–357 (2013). https://doi.org/10.1134/S1087659613040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613040123

Keywords

Navigation