Skip to main content
Log in

Structure and thermodynamic properties of zircon-coffinite solid solutions according to the semiempirical atomistic simulation data

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Structure and thermodynamic properties of zircon, coffinite, and zircon-coffinite solid solutions were subject to semiempirical atomistic simulation on the assumption of compositional disordering of mixed crystals: (Zr1 − x , U x )SiO4, where x = 0.02, 0.05, 0.08, 0.11, 0.14, 0.28, 0.50, 0.72, and 0.86. The solid solutions significantly depart from the Vegard and Retgers laws. The (Zr1 − x , U x )SiO4 mixed crystal structure is characterized by anisotropic expansion (largely in the a and b directions) under growth in x related to anisotropy of structural relaxation degree of the cation-oxygen interatomic spacing in the (Zr, U)O8 polyhedron. Increase in x parameters is accompanied by increase in average size of cation-oxygen polyhedrons and silica-oxygen tetrahedrons and by growth of interatomic spacing dispersion; maximum dispersion values are observed at x = 0.5–0.6. The distortions in local structures of ZrO8 and UO8 dodecahedrons and silica-oxygen tetrahedrons in the solid solution were analyzed on the basis of calculated functions of interatomic distance distribution. The obtained results demonstrate the possibility to assess numerically the structural (geometrical) disordering degree of the compositionally disordered solid solution depending on its composition. The calculated thermodynamic characteristics of solid solutions forecast the following solubility range limits: 2 mol % USiO4 in zircon and 5 mol % ZrSiO4 in coffinite under ∼1750 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing, R.C., Lutze, W., and Weber, W.J., Zircon: A Host Phase for the Disposal of Weapons Plutonium, J. Mater. Res., 1995, vol. 10, pp. 243–246.

    Article  CAS  Google Scholar 

  2. Burakov, B.E., Anderson, E.B., Rovsha, V.S., Ushakov, S.V., Ewing, R.C., Lutze, W., and Weber, W.J., Synthesis of Zircon for Immobilization of Actinides, Mater. Res. Soc. Symp. Proc., 1996, vol. 412, pp. 33–39.

    Article  CAS  Google Scholar 

  3. Forster, H.J., Composition and Origin of Intermediate Solid Solutions in the System Thorite-Xenotime-Zircon-Coffinite, Lithos, 2006, vol. 88, nos. 1–4, pp. 35–55.

    Article  Google Scholar 

  4. Mumpton, F.A. and Roy, R., Hydrothermal Stability Studies of the Zircon-Thorite Group, Geochim. Cosmochim. Acta, 1961, vol. 21, pp. 217–238.

    Article  CAS  Google Scholar 

  5. Ushakov, S.V., Gong, W., Yagovkina, M.M., Helean, K.B., Lutze, W., and Ewing, R.C., Solid Solution of Ce, U, and Th in Zircon, Ceram. Trans., 1999, vol. 93, pp. 357–363.

    CAS  Google Scholar 

  6. Hoskin, P.W.O. and Schaltegger, U., The Composition of Zircon and Igneous and Metemorphic Petrogenesis, in Reviews in Mineralogy and Geochemistry, Volume 53: Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Washington: The Mineralogical Society of America, 2003, pp. 27–62.

    Google Scholar 

  7. Breiter, K., Forster, H.J., and Skoda, R., Extreme P-, Bi-, Nb-, Sc-, U-, and F-Rich Zircon from Fractionated Perphosphorous Granites: The Peraluminous Podlesi Granite System, Czech Republic, Lithos, 2006, vol. 88, pp. 15–34.

    Article  CAS  Google Scholar 

  8. Anderson, E.B., Burakov, B.E., and Pazukhin, E.M., High-Uranium Zircon from “Chernobyl Lavas,” Radiochim. Acta, 1993, vol. 60, pp. 149–151.

    CAS  Google Scholar 

  9. Burakov, B.E., A Study of High-Uranium Technogeneous Zircon (Zr,U)SiO4 from Chernobyl “Lavas” in Connection with the Problem of Creating a Crystalline Matrix for High-Level Waste Disposal, in Proceedings of the International Conference “SAFE WASTE’93,” Avignon, France, June 13–18, 1993, Avignon, 1993, vol. 2, pp. 19–33.

    Google Scholar 

  10. Pointer, C.M., Ashworth, J.R., and Ixer, R.A., The Zircon-Thorite Mineral Group in Metasomatized Granite, Ririwai, Nigeria 1. Geochemistry and Metastable Solid-Solution of Thorite and Coffinite, Mineral. Petrol., 1988, vol. 38, pp. 245–262.

    Article  CAS  Google Scholar 

  11. Geisler, T., Schaltegger, U., and Tomaschek, F., Re-Equilibration of Zircon in Aqueous Fluids and Melts, Elements, 2007, vol. 3, pp. 43–50.

    Article  CAS  Google Scholar 

  12. Cherniak, D.J. and Watson, E.B., Diffusion in Zircon, in Reviews in Mineralogy and Geochemistry, Volume 53: Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Washington: The Mineralogical Society of America, 2003, pp. 113–143.

    Google Scholar 

  13. Ferriss, E.D.A., Ewing, R.C., and Becker, U., Simulation of Thermodynamic Mixing Properties of Actinide-Containing Zircon Solid Solutions, Am. Mineral., 2010, vol. 95, pp. 229–241.

    Article  CAS  Google Scholar 

  14. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: Moscow State University, 1987.

    Google Scholar 

  15. Newton, R.C. and Wood, B.J., Volume Behavior of Silicate Solid Solutions, Am. Mineral., 1980, vol. 65, pp. 733–745.

    CAS  Google Scholar 

  16. Ganguly, J., Cheng, W., and O’Neill, H.S.C., Syntheses, Volume, and Structural Changes of Garnets in the Pyrope-Grossular Join: Implications for Stability and Mixing Properties, Am. Mineral., 1993, vol. 78, pp. 841–593.

    Google Scholar 

  17. Shannon, R.D., Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., 1976, vol. 32, pp. 751–767.

    Article  Google Scholar 

  18. Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J., and Corrales, L.R., Radiation Effects in Zircon, in Reviews in Mineralogy and Geochemistry, Volume 53: Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Washington: The Mineralogical Society of America, 2003, pp. 387–425.

    Google Scholar 

  19. Geisler, T., Burakov, B.E., Zirlin, V., Nikolaeva, L., and Poml, P., A Raman Spectroscopic Study of High-Uranium Zircon from the Chernobyl “Lava,” Eur. Mineral., 2005, vol. 17, pp. 883–894.

    Article  CAS  Google Scholar 

  20. Rios, S. and Salje, E.K.H., Localized Defects in Radiation-Damaged Zircon, Acta Crystallogr., 2000, vol. 56, pp. 947–952.

    Article  Google Scholar 

  21. Meis, C. and Gale, J.D., Computational Study of Tetravalent Uranium and Plutonium Lattice Diffusion in Zircon, Mater. Sci. Eng., 1998, pp. 52–61.

    Google Scholar 

  22. Akhtar, M.J. and Waseem, S., Atomistic Simulation Study of Zircon, Chem. Phys., 2001, vol. 274, pp. 109–120.

    Article  CAS  Google Scholar 

  23. Williford, R.E., Begg, B.D., Weber, W.J., and Hess, N.J., Computer Simulation of Pu3+ and Pu4+ Substitutions in Zircon, J. Nucl. Mater., 2000, vol. 278, pp. 207–211.

    Article  CAS  Google Scholar 

  24. Shchapova, Yu.V., Votyakov, S.L., and Porotnikov, A.V., The Local Structure of Impurity Centers of Rare-Earth and Radioactive Elements in Zircon from Computer Simulation Data, in Ezhegodnik-2005 IGG UrO RAN (Yearbook-2005 of the Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences), Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2006, pp. 287–296.

    Google Scholar 

  25. Gale, J.D., GULP: Capabilities and Prospects, Z. Kristallogr., 2005, vol. 220, pp. 552–554.

    Article  CAS  Google Scholar 

  26. Eremin, N.N. and Urusov, V.S., Development and Improvement of Methods of Atomistic Computer Simulations of Substitutional Solid Solutions, in Problemy kristallologii (Problems of Crystallogy), Moscow: GEOS, 2009, issue 6, pp. 29–83.

    Google Scholar 

  27. Heermann, D.W., Computer Simulation Methods in Theoretical Physics, Berlin: Springer-Verlag, 1990. Translated under the title Metody komp’yuternogo eksperimenta v teoreticheskoi fizike, Moscow: Nauka, 1990.

    Book  Google Scholar 

  28. Robinson, K., Gibbs, G.V., and Ribbe, P.H., The Structure of Zircon: A Comparison with Garnet, Am. Mineral., 1971, vol. 56, pp. 783–789.

    Google Scholar 

  29. Fuchs, L.H. and Gebert, E., X-ray Studies of Synthetic Coffinite, Thorite, and Uranothorites, Am. Mineral., 1958, vol. 43, pp. 243–248.

    CAS  Google Scholar 

  30. Ozkan, H., Crtz, L., and Jamieson, J.C., Elastic Constants of Nonmetamict Zirconium Silicate, J. Appl. Phys., 1974, vol. 45, p. 556.

    Article  CAS  Google Scholar 

  31. CRC Handbook of Chemistry and Physics, 87th ed., Lide, D.R., Ed., Boca Raton (Florida, United States): CRC Press, 2004.

    Google Scholar 

  32. Ryzhkov, M.V., Ivanovskii, A.L., Porotnikov, A.V., Shchapova, Yu.V., and Votyakov, S.L., Electronic Structure of an Impurity Uranium Center in Zircon, J. Struct. Chem., 2008, vol. 49, no. 2, pp. 201–206.

    Article  CAS  Google Scholar 

  33. Eremin, N.N., Deyanov, R.Z., and Urusov, V.S., Choice of the Supercell with the Optimum Atomic Configuration in the Simulation of Disordered Solid Solutions, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  34. Finch, R.J. and Hanchar, J.M., Structure and Chemistry of Zircon and Zircon-Group Minerals, in Reviews in Mineralogy and Geochemistry, Volume 53: Zircon, Hanchar, J.M. and Hoskin, P.W.O., Eds., Washington: The Mineralogical Society of America, 2003, pp. 1–25.

    Google Scholar 

  35. Wyckoff, R.W.G., Crystal Structures, New York: Wiley, 1971, vols. 1–6.

  36. West, A.R., Solid State Chemistry and Its Applications, New York: Wiley, 1987. Translated under the title Khimiya tverdogo tela, Moscow: Mir, 1988, part 1.

    Google Scholar 

  37. Dollase, W.A., Optimum Distance Model of Relaxation around Substitutional Defects, Phys. Chem. Miner., 1980, vol. 6, pp. 295–304.

    Article  CAS  Google Scholar 

  38. Geisler, T., Isothermal Annealing of Partially Metamict Zircon: Evidence for a Three-Stage Recovery Process, Phys. Chem. Miner., 2002, vol. 29, pp. 420–429.

    Article  CAS  Google Scholar 

  39. Klyava, Ya.G., EPR-spektroskopiya neuporyadochennykh tverdykh tel (EPR Spectroscopy of Disordered Solids), Riga: Zinatne, 1988.

    Google Scholar 

  40. Urusov, V.S., Tauson, V.L., and Akimov, V.V., Geokhimiya tverdogo tela (Geochemistry of the Solid State), Moscow: GEOS, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Zamyatin.

Additional information

Original Russian Text © D.A. Zamyatin, Yu.V. Shchapova, S.L. Votyakov, N.N. Eremin, V.S. Urusov, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamyatin, D.A., Shchapova, Y.V., Votyakov, S.L. et al. Structure and thermodynamic properties of zircon-coffinite solid solutions according to the semiempirical atomistic simulation data. Glass Phys Chem 39, 182–192 (2013). https://doi.org/10.1134/S108765961302017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961302017X

Keywords

Navigation