Skip to main content
Log in

Composition of Magmatic and Hydrothermal Zircon in the Elinovskii Massif, Gorny Altai

  • Minerals and Mineral Assemblages
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The paper discusses new SHRIMP II data on the absolute age of riebeckite granite of the Elinovskii massif, Gorny Altai, and presents comparative characteristics of the morphology and chemical composition of magmatic and hydrothermal zircon obtained by LA-ICP-MS. It is shown that the revealed differences between the two types of zircon are related to the peculiarities of the fluid regime of granitoid melts. Both types of zircon manifest the tetrad effect of M-type REE fractionation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aja, S.U., Wood, S.A., and Williams, JonesA.E., The solubility of some alkali-bearing Zr minerals in hydrothermal solu-tions, Aqueous Chem. Geochem. Oxides, Oxyhvdroxides, Relat. Mater., 1997, vol. 432, pp. 69–74.

    Google Scholar 

  • Avers, J., Zhang, L., Luo, Y., and Peters, T., Zircon solubility in alkaline aqueous fluids at upper crustal conditions, Geochim. Cosmochim. Acta, 2012, vol. 96, pp. 18–28.

    Article  Google Scholar 

  • Bakker, R.J. and Elburg, M.A., A magmatic-hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside–titanite pegmatites to hematitequartz growth, Contrib. Mineral. Petrol., 2006, vol. 152, pp. 541–569.

    Google Scholar 

  • Bau, M., Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y–Ho fractionation, and lanthanide tetrad effect, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 67–77.

    Article  Google Scholar 

  • Bau, M. and Dulski, P., Comparative-study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids, Contrib. Mineral. Petrol., 1995, vol. 119, pp. 213–223.

    Article  Google Scholar 

  • Belousova, E.A., Griffin, W.L., and O’Reilly, S.Y., Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids, J. Petrol, 2006, vol. 47, pp. 329–353.

    Article  Google Scholar 

  • Finlowbates, T. and Stumpfl, E.F., The behavior of socalled immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore deposits, Miner. Deposita, 1981, vol. 16, pp. 319–328.

    Google Scholar 

  • Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S., and Valley, J.W., Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia, Chem. Geol., 2009, vol. 259, pp. 131–142.

    Article  Google Scholar 

  • Gasquet, D., Pelleter, E., Cheilletz, A., Mouttaqi, A., Annich, M., El Hakour, A., Deloule, E., and Feraud, G., Hydrothermal zircons: a tool for ion microprobe U–Pb dating of gold mineralization (Tamlalt-Menhou-hou gold deposit Morocco), Chem. Geol., 2007, vol. 245, pp. 135–161.

    Google Scholar 

  • Gusev, A.I. and Tabakaeva, E.M., Petrology, Geochemistry and Genesis of Anorogenic Granitoids, Hamburg: Palmarium Academic Publishing, 2015.

    Google Scholar 

  • Hanchar, J.M. and Westrenen, W.V., Rare earth element behavior in zircon–melt systems, Elements, 2007, vol. 3, pp. 37–42.

    Article  Google Scholar 

  • Harley, S.L. and Kelly, N.M., Zircon tiny but timely, Elements, 2007, vol. 3, pp. 13–18.

    Article  Google Scholar 

  • Hoskin, P.W.O. and Schaltegger, U., The composition of zircon and igneous and metamorphic petrogenesis, Rev. Mineral. Geochem., 2003, vol. 53, pp. 21–62.

    Article  Google Scholar 

  • Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 637–648.

    Article  Google Scholar 

  • Irber, W., The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites, Geochim. Comochim. Acta, 1999, vol. 63, pp. 489–508.

    Article  Google Scholar 

  • John, B.-M., Wu, F.Y., Capdevila, R., Martineau, F., Zhao, Z.H., and Wang, Y.X., Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China, Lithos, 2001, vol. 59, pp. 171–198.

    Article  Google Scholar 

  • Lawrie, K.C., Mernagh, T.P., Ryan S.G., van Achterbergh, E., and Black, L.P., Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au–Ag–(Cu) deposit, New South Wales, Australia, Proc. Geol. Assoc., 2007, vol. 118, pp. 37–46.

    Article  Google Scholar 

  • Van Lichtervelde, M., Melcher, F., and Wirth, R., Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada, Am. Mineral., 2009, vol. 94, pp. 439–450.

    Google Scholar 

  • Van Lichtervelde, M., Holtz, F., and Hanchar, J.M., Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts, Contrib. Mineral. Petrol., 2010, vol. 160, pp. 17–32.

    Google Scholar 

  • Marakushev, A.A., Thermodynamic factors of ore zoning formation, Prognozirovanie skrytogo orudeneniya ba osnove zonal’nosti gidrotermal’nykh mestorozhdenii (Prediction of Hidden Mineralization on the Basis of Zoning of Hydrothermal Deposits), Moscow: Nauka. 1976. P. 36–51 (in Russian).

    Google Scholar 

  • Masuda, A. and Ikeuchi, Y., Lanthanide tetrad effect observed in marine environment. Geochem. J., 1979, vol. 13, pp. 19–22.

    Google Scholar 

  • Mazdab, F., Wooden, J.L., Cheadle, M.J., Hanghoj, K., and Schwartz, J.J., The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 2007, vol. 35, pp. 643–646.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S., The composition of the Earth, Chem. Geol, 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • McNaughton, N.J., Mueller, A.G., and Groves, D.I., The age of the giant Golden Mile deposit, Kalgoor-lie, Western Australia: ion-microprobe zircon and monazite U-Pb geochronology of a synmineralization lamprophyre dike, Econ. Geol., 2005, vol. 100, pp. 1427–1440.

    Google Scholar 

  • Skublov, S.G., Myskova, T.A. and Marin, Yu.B., Astaf’ev, B.Yu., Bogomolov, E.S., and L’vov, P.A., Geochemistry of zircon rims with different ages in gneisses of the Kola Series (SIMS, SHRIMP-II) and the problem of early Caledonian thermal activization of the Kola craton. Dokl. Earth Sci., 2013, vol. 453, pp. 1250–1256.

    Google Scholar 

  • Pettke, T., Audetat, A., Schaltegger, U., and Heinrich, S.A., Magmatic-to hydrothermal crystallization in the W–Sn mineralized Mole granite (NSW, Australia)—Part II: evolving zircon and thorite trace element chemistry, Chem. Geol., 2005, vol. 220, pp. 191–213.

    Google Scholar 

  • Pupin, J.P. and Turco, G., Unetypologie originale du zircon accessoire, Bull. Soc. Franc. Mineral. Cristallogr., 1972, vol. 95, pp. 348–359.

    Google Scholar 

  • Pupin, J.P., Zircon and granite petrology, Contrib. Mineral. Petrol., 1980, vol. 73, pp. 207–220.

    Article  Google Scholar 

  • Rubin, J.N., Henry S.D., and Price J.G., Hydrothermal zircons and zircon over growths, Sierra-Blanca peaks, Texas, Am. Mineral., 1989, vol. 74, pp. 865–869.

    Google Scholar 

  • Salvi, S. and Williams-Jones, A.E., Alteration, HFSE mineralization and hydrocarbon formation in pe-ralkaline igneous systems: insights from the Strange Lake Pluton, Canada, Lithos, 2006, vol. 91, pp. 19–34.

    Google Scholar 

  • Schaltegger, U., Hydrothermal zircon. Elements, 2007, vol. 3, pp. 51–68.

    Article  Google Scholar 

  • Schaltegger, U. and Tomaschek, F., Re-equilibration of zircon in aqueous fluids and melts, Elements, 2007, vol. 3, pp. 43–50.

    Article  Google Scholar 

  • Schaltegger, U., Pettke, T., Audetat, A., Reusser, E., and Heinrich, S.A., Magmatic-to-hydrothermal crystallization in the W–Sn mineralized mole granite (NSW, Australia). part I: crystallization of zircon and REE phosphates over three million years—a geochemical and U–Pb geochronological study, Chem. Geol., 2005, vol. 220, pp. 215–235.

    Google Scholar 

  • Valley, P.M., Hanchar, J.M., and Whitehonse, M.J., Direct dating of Fe oxide–(Cu–Au) mineralization by U/Pb zircon geochronology, Geology, 2009, vol. 37, pp. 223–226.

    Article  Google Scholar 

  • Valley, P.M., Fisher, S.M., Hanchar, J.M., Lam, R., Tubrett, M., Hafnium isotopes in zircon: a tracer of fluidrock interaction during magnetite-apatite (“Kiruna-type”) mineralization, Chem. Geol., 2010, vol. 275, pp. 208–220.

    Article  Google Scholar 

  • Veksler, I.V., Liquid immiscibility and its role at the magmatic hydrothermal transition: a summary of experimental studies, Chem. Geol., 2004, vol. 210, pp. 7–31.

    Article  Google Scholar 

  • Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P., and Dingwell, D.B., Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 2847–2860.

    Article  Google Scholar 

  • Wayne, D.M. and Hewitt, D.A., The hydrothermal stability of zircon: preliminary experimental and isotopic studies, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 3551–3560.

    Article  Google Scholar 

  • Yang, W.-B., Niu, H.-C., Shan, O., Sun, W.-D., Zhang, H., Li, N.-B., Jiang, Yu.-H., and Yu, X.-Y., Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization, Miner. Deposita, 2014, vol. 49., no. 4, 451–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gusev.

Additional information

Original Russian Text © A.I. Gusev, 2017, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2017, No. 4, pp. 54–64.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.I. Composition of Magmatic and Hydrothermal Zircon in the Elinovskii Massif, Gorny Altai. Geol. Ore Deposits 60, 708–716 (2018). https://doi.org/10.1134/S1075701518080044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701518080044

Keywords

Navigation