Skip to main content
Log in

Aktashite Cu6Hg3As4S12 from the Aktash deposit, Altai, Russia: Refinement and crystal chemical analysis of the structure

  • Mineralogical Crystallography and Crystal Chemistry
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The composition and structure of aktashite from the Aktash deposit, Gorny Altai, Russia, have been studied by electron microprobe and X-ray structural analysis. On the basis of close compositions and crystal structures, the identity of aktashite from the Gal-Khaya and Aktash deposits has been demonstrated. Crystals of aktashite are of trigonal symmetry; the unit-cell dimensions are: a = 13.7500(4), c = 9.3600(3) Å, V = 532.54(8) Å3, space group R3, Z = 3 for the composition of Cu6Hg3As4S12, R = 0.043. The structure of aktashite as a framework of vertex-shared HgS4− and CuS4− tetrahedrons of the same orientation is intimately related to the sphalerite-type structure. The earlier identified uncommon cluster group [As4] has been verified and its parameters have been refined. It is shown that the structure may be represented as construction blocks (As4S12)12− packed according to the law of the distorted cubic I-cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11): Bruker Advanced X-ray Solutions (Bruker AXS Inc., Madison, 2004).

  2. M. S. Bezsmertnaya and T. N. Chvileva, Identification Guide of Ore Minerals in Reflected Light (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  3. N. A. Bliznyuk and S. V. Borisov, “Progress in Methods of Geometric Analysis of the Structures of Inorganic Compounds,” Zh. Strukt. Khim. 33(2), 145–162 (1992).

    Google Scholar 

  4. N. A. Bliznyuk, S. V. Borisov, and E. Kuklina, “Classification of Fluorides of Heavy Metals. Fluorides with Fluorite-Type Cation Arrangment,” Zh. Strukt. Khim. 35(1), 71–80 (1994).

    Google Scholar 

  5. S. V. Borisov, R. F. Klevtsova, S. A. Magarill, et al., “Experimental Crystallography from Atomic to Supramolecular,” Zh. Strukt. Khim. 43(4), 664–670 (2002).

    Google Scholar 

  6. M. C. Burla, R. Galiandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, and R. Spagna, “SIR2004: an Improved Tool for Crystal Structure Determination and Refinement,” J. Appl. Cryst. 38. 381–388 (2005).

    Article  Google Scholar 

  7. S. A. Gromilov and S. V. Borisov, “Application of Pseudoperiodicity for Determination of Common Structural Motif of Coordination Compounds on the Basis of X-ray Diffraction Data of Polycrystals,” Zh. Strukt. Khim. 44(4), 724–742 (2003).

    Google Scholar 

  8. V. S. Gruzdev, N. M. Chernitsova, and N. G. Shumkova, “New Data on Aktashite Cu6Hg3As5S12,” Dokl. Akad. Nauk SSSR 206(3), 694–697 (1972).

    Google Scholar 

  9. L. N. Kaplunnik, E. A. Pobedimskaya, and N. V. Belov, “Crystal Structure of Aktashite Cu6Hg3As5S12,” Dokl. Akad. Nauk SSSR 251(1), 96–98 (1980).

    Google Scholar 

  10. S. V. Krivovichev and S. K. Filatov, “Structural Principles for Minerals and Inorganic Compounds Containing Anion-Centered Tetrahedra,” Am. Mineral. 84, 1099–1106 (1999).

    Google Scholar 

  11. V. Nowacki, “Isotypy of Aktashite Cu6Hg3As5S12 and Nowackiite Cu6Zn3As4S12,” Kristallografiya 27(1), 49–50 (1982).

    Google Scholar 

  12. E. A. Pobedimskaya, L. N. Kaplunnik, and I. V. Petrova, “Crystallochemical Classifications of Sulfides and Sulfosalts,” Itogi Nauki I Tekhniki, Ser. Kristallokhimiya. 25, 119–214 (1991).

    Google Scholar 

  13. G. M. Sheldrick, SHELXS97 and SHELXL97. Programs for the Refinement of Crystal Structures (University of Göttingen, 1998).

  14. E. M. Spiridonov, L. Ya. Krapiva, A. K. Gapeev, et al., “Gruzdevite Su6Hg3Sb4S12, a New Mineral Species from the Chauvay Sb-Hg Deposit, Central Asia,” Dokl. Akad. Nauk SSSR 261(4), 971–976 (1981a).

    Google Scholar 

  15. E. M. Spiridonov, L. Ya. Krapiva, V. I. Stepanov, and T. N. Chvileva, “Sb-Bearing Aktashite from the Chauvay Hg deposit, Central Asia,” Dokl. Akad. Nauk SSSR 261(3), 744–748 (1981b).

    Google Scholar 

  16. V. I. Vasil’ev, “New Ore Minerals and Their Assemblages from Mercury Deposits of Gorny Altai,” in Problems of Mercury Metallogeny of Siberia and Russian Far East (Nauka, Moscow, 1968a), pp. 111–129 [in Russian].

    Google Scholar 

  17. V. I. Vasil’ev, “The Aktash Deposit As an Example of Carbonate-Cinnabar Mineral Type of Mercury Ore Assemblage,” in Ore Assemblages and Genesis of Endogenic Deposits in the Altai-Sayan Fold Region (Nauka, Moscow, 1968b), pp. 76–113 [in Russian].

    Google Scholar 

  18. V. I. Vasil’ev, Candidate’s Dissertation in Geology and Mineralogy (Novosibirsk, 1970).

  19. V. I. Vasil’ev and Yu. G. Lavrent’ev, “Hg-bearing tennantite,” Dokl. Akad. Nauk SSSR 218(3), 665–667 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasil’ev.

Additional information

Original Russian Text © V.I. Vasil’ev, N.V. Pervukhina, S.V. Borisov, S.A. Magarill, D.Yu. Naumov, N.V. Kurat’eva, 2009, published in Zapiski RMO (Proceedings of the Russian Mineralogical Society), 2009, No. 2, pp. 75–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’ev, V.I., Pervukhina, N.V., Borisov, S.V. et al. Aktashite Cu6Hg3As4S12 from the Aktash deposit, Altai, Russia: Refinement and crystal chemical analysis of the structure. Geol. Ore Deposits 52, 656–661 (2010). https://doi.org/10.1134/S1075701510070184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510070184

Keywords

Navigation