Skip to main content
Log in

Synthesis, Molecular Docking Study, and Molecular Dynamics Simulation of New 1,3-Dimethyl-5-methylidenebarbituric Acid Derivatives Prepared by Cyclobutane Cleavage

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Various organic derivatives of 1,3-dimethylbarbituric acid attract widespread interest as biologically active compounds, medicinal agents, and precursors in organic synthesis. The chemical reactivity of the cyclobutane moiety in 1,3-dimethyl-5-methylidenebarbituric acid dimer (2) was examined at room temperature toward various primary aliphatic amines (benzylamine, 4-methoxybenzylamine, and 3-fluorobenzylamine) and hydroxide ion, as well as in acidic medium. New compounds were prepared by ring-opening of the cyclobutane moiety via nucleophile attack on the exocyclic methylene group. The structures of the synthesized compounds were elucidated by employing 1H and 13C NMR (including DEPT) and mass spectrometric techniques. Molecular docking revealed a high binding affinity (–9.0 kcal/mol) of one of the obtained compounds (6). In addition, the molecular dynamics simulation and binding free energy calculation data confirmed that compound 6 is the most stable among the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme
Scheme
Fig. 3.
Fig. 4.

REFERENCES

  1. Figueiredo, J., Serrano, J.L., Cavalheiro, E., Keurulai­nen, L., Yli-Kauhaluoma, J., Moreira, V.M., Ferreira, S., Domingues, F.C., Silvestre, S., and Almeida, P., Eur. J. Med. Chem., 2018, vol. 143, p. 829. https://doi.org/10.1016/j.ejmech.2017.11.070

    Article  CAS  PubMed  Google Scholar 

  2. Holtkamp, M. and Meierkord, H., Cell. Mol. Life Sci., 2007, vol. 64, p. 2023. https://doi.org/10.1007/s00018-007-7021-2

    Article  CAS  PubMed  Google Scholar 

  3. Kotha, S., Dep, A., and Kumar, R., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 1039. https://doi.org/10.1016/j.bmcl.2004.12.034

    Article  CAS  PubMed  Google Scholar 

  4. Vieira, A., Gomes, N., Matheus, M., Fernandes, P., and Figueroa-Villar, J., J. Braz. Chem. Soc., 2011, vol. 22, p. 364. https://doi.org/10.1590/S0103-50532011000200024

    Article  CAS  Google Scholar 

  5. Thetford, D., Chorlton, A.P., and Hardman, J., Dyes Pigm., 2003, vol. 59, p. 185. https://doi.org/10.1016/S0143-7208(03)00104-9

    Article  CAS  Google Scholar 

  6. Mallah, E., Sweidan, K., Engelmann, J., Steimann, M., Kuhn, N., and Maier, M.E., Tetrahedron, 2012, vol. 68, p. 1005. https://doi.org/10.1016/j.tet.2011.11.093

    Article  CAS  Google Scholar 

  7. Sweidan, K., Abu-Salem, Q., Al-Sheikh, A., and Sheikha, G.A., Lett. Org. Chem., 2009, vol. 6, p. 669. https://doi.org/10.2174/157017809790442934

    Article  CAS  Google Scholar 

  8. Sweidan, K., Abu Rayyan, W., Abu Zarga, M., El-Abadelah, M.M., and Mohammad, H.A.Y., Lett. Org. Chem., 2014, vol. 11, p. 422. https://doi.org/10.1515/znb-2015-0037

    Article  CAS  Google Scholar 

  9. Ziarani, G.M., Aleali, F., and Lashgari, N., RSC Adv., 2016, vol. 6, p. 50895. https://doi.org/10.1039/C6RA09874F

    Article  CAS  Google Scholar 

  10. Giziroglu, E., Nesrullajev, A., and Orhan, N., J. Mol. Struct., 2014, vol. 1056, p. 246. https://doi.org/10.1016/j.molstruc.2013.10.038

    Article  CAS  Google Scholar 

  11. Kazemi, E., Davoodnia, A., Nakhaei, A., Basafa, S., and Tavakoli-Hoseini, N., Adv. J. Chem., Sect. A, 2018, vol. 1, p. 96. https://doi.org/10.29088/sami/AJCA.2018.1.96104

    Article  Google Scholar 

  12. Mezoughi, A.B., Mohammed, W.A., and Ettar­houni, Z.O., J. Chem. Rev., 2021, vol. 3, p. 196. https://doi.org/10.22034/jcr.2021.285244.1111

    Article  CAS  Google Scholar 

  13. Mighani, H., Sajadinia, S.M., Nasr-Isfahani, H., and Ba­khe­rad, M., Adv. J. Chem., Sect. A, 2021, vol. 4, p. 300. https://doi.org/10.22034/ajca.2021.286663.1262

    Article  CAS  Google Scholar 

  14. Zuccarello, F., Buemi, G., Gandolfo, C., and Contino, A., Spectrochim. Acta, Part A, 2003, vol. 59, p. 139. https://doi.org/10.1016/S1386-1425(02)00146-4

    Article  Google Scholar 

  15. Kreft, A., Ehlers, S., Jones, P.G., and Werz, D.B., Org. Lett., 2019, vol. 21, p. 6315. https://doi.org/10.1021/acs.orglett.8b00603

    Article  CAS  PubMed  Google Scholar 

  16. Doser, B., Sweidan, K., Kuhn, N., and Ochsenfeld, C., J. Phys. Org. Chem., 2015, vol. 28, p. 354. https://doi.org/10.1002/poc.3417

    Article  CAS  Google Scholar 

  17. Sweidan, K., Dayyih, W.A., AlDamen, M.A., Mallah, E., Arafat, T., El-Abadelah, M.M., Salih, H., and Voelter, W., Z. Naturforsch., Teil B, 2017, vol. 72, p. 377. https://doi.org/10.1515/znb-2017-0016

    Article  CAS  Google Scholar 

  18. Jalilzadeh, M. and Pesyan, N.N., Bull. Korean Chem. Soc., 2011, vol. 32, p. 3382. https://doi.org/10.5012/bkcs.2011.32.9.3382

    Article  CAS  Google Scholar 

  19. Patil, S.M., Martiz, R.M., Ramu, R., Shirahatti, P.S., Prakash, A., Chandra, J., and Lakshmi Ranganatha, V., J. Biomol. Struct. Dyn., 2022, vol. 40, p. 13032. https://doi.org/10.1080/07391102.2021.1978322

    Article  CAS  PubMed  Google Scholar 

  20. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R., J. Cheminf., 2011, vol. 3, article no. 33. https://doi.org/10.1186/1758-2946-3-33

  21. Zoete, V., Cuendet, M.A., Grosdidier, A., and Michie­lin, O., J. Comput. Chem., 2011, vol. 32, p. 2359. https://doi.org/10.1002/jcc.21816

    Article  CAS  PubMed  Google Scholar 

  22. Patil, S.M. Maruthi, K.R., Naik, S.N., Vyshali, V.M., Sushmitha, S., Akhila, C., and Ramu, R., Bioinformation, 2021, vol. 17, no. 11, p. 932. https://doi.org/10.6026/97320630017932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, V., Arunodaya, H.S., Chandra, S., Ramu, R., Patil, S.M., Baliga, A., Rai, V.M., Vishwanatha, U., Vishwanatha, P., Shenoy, S.M., and Poojary, B., Chem. Biodiversity, 2021, vol. 19, article ID e202100532. https://doi.org/10.1002/cbdv.202100532

  24. Ganavi, D., Ramu, R., Kumar, V., Patil, S.M., Martiz, R.M., Shirahatti, P.S., Sathyanarayana, R., Poojary, B., Holla, B.S., Poojary, V., Kumari, K.N., Arch. Pharm., 2021, vol. 12, article ID e2100342. https://doi.org/10.1002/ardp.202100342

  25. Gurupadaswamy, H.D., Ranganatha, V.L., Ramu, R., Patil, S.M., and Khanum, S.A., J. Iran. Chem. Soc., 2022, vol. 19, p. 2421. https://doi.org/10.1007/s13738-021-02460-0

    Article  CAS  Google Scholar 

  26. Maradesha, T., Patil, S.M., Al-Mutairi, K.A., Ramu, R., Madhunapantula, S.V., and Alqadi, T., Molecules, 2022, vol. 27, article no. 1888. https://doi.org/10.3390/molecules27061888

  27. Kumar, V., Ramu, R., Shirahatti, P.S., Kumari, V.C., Sushma, P., Mandal, S.P., and Patil, S.M., Chemistry­Select, 2021, vol. 6, p. 9637. https://doi.org/10.1002/slct.202101954

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Deanship of Scientific Research, University of Jordan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Al-Ghorbani or K. Sweidan.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ghorbani, M., Sweidan, K., Krefeh, H.A. et al. Synthesis, Molecular Docking Study, and Molecular Dynamics Simulation of New 1,3-Dimethyl-5-methylidenebarbituric Acid Derivatives Prepared by Cyclobutane Cleavage. Russ J Org Chem 59, 445–454 (2023). https://doi.org/10.1134/S1070428023030120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023030120

Keywords:

Navigation