Skip to main content
Log in

Solvent-Free Synthesis of Quinazolinone Derivatives Catalyzed by Wet Zinc Oxide Nanopowder under Air Atmosphere

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Wet zinc oxide nanopowder was found to be a highly effective catalyst for the cyclization of o-aminobenzamide with aldehydes, followed by dehydrogenation under air atmosphere. The presence of moisture in the catalyst played a crucial role in the selective formation of quinazolin-4(3H)-ones under solvent-free conditions. The procedure is operationally simple, and it does not need toxic or volatile organic solvents and provides excellent yield of the products. Moreover, the catalyst was recycled and reused in three successive reactions without significant loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Horton, D.A., Bourne, G.T., and Smythe, M.L., Chem. Rev., 2003, vol. 103, p. 893. https://doi.org/10.1021/cr020033s

    Article  CAS  PubMed  Google Scholar 

  2. Kshirsagar, U.A., Org. Biomol. Chem., 2015, vol. 13, p. 9336. https://doi.org/10.1039/C5OB01379H

    Article  CAS  PubMed  Google Scholar 

  3. Mhaske, S.B. and Argade, N.P., Tetrahedron, 2006, vol. 62, p. 9787. https://doi.org/10.1016/j.tet.2006.07.098

    Article  CAS  Google Scholar 

  4. Cagir, A., Jones, S.H., Gao, R., Eisenhauer, B.M., and Hecht, S.M., J. Am. Chem. Soc., 2003, vol. 125, p. 13628. https://doi.org/10.1021/ja0368857

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, J.B., Hesson, D.P., Dusak, B.A., Dexter, D.L., Kang, G.J., and Hamel, E., J. Med. Chem., 1990, vol. 33, p. 1721. https://doi.org/10.1021/jm00168a029

    Article  CAS  PubMed  Google Scholar 

  6. Ozaki, K., Yamada, Y., Oine, T., Ishizuka, T., and Iwasawa, Y., J. Med. Chem., 1985, vol. 28, p. 568. https://doi.org/10.1021/jm50001a006

    Article  CAS  PubMed  Google Scholar 

  7. Grover, G. and Kini, S.G., Eur. J. Med. Chem., 2006, vol. 41, p. 256. https://doi.org/10.1016/j.ejmech.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  8. Abou-Seri, S.M., Abouzid, K., and Abou El Ella, D.A., Eur. J. Med. Chem., 2011, vol. 46, p. 647. https://doi.org/10.1016/j.ejmech.2010.11.045

    Article  CAS  PubMed  Google Scholar 

  9. Wolfe, J.F., Rathman, T.L., Sleevi, M.C., Campbell, J.A., and Greenwood, T.D., J. Med. Chem., 1990, vol. 33, p. 161. https://doi.org/10.1021/jm00163a027

    Article  CAS  PubMed  Google Scholar 

  10. Tang, L., Zhao, X., Zou, G., Zhou, Y., and Yang, X., Asian J. Org. Chem., 2016, vol. 5, p. 335. https://doi.org/10.1002/ajoc.201500512

    Article  CAS  Google Scholar 

  11. Xu, W. and Fu, H., J. Org. Chem., 2011, vol. 76, p. 3846. https://doi.org/10.1021/jo2002227

    Article  CAS  PubMed  Google Scholar 

  12. Liu, X., Fu, H., Jiang, Y., and Zhao, Y., Angew. Chem., Int. Ed., 2009, vol. 121, p. 354. https://doi.org/10.1002/ange.200804675

    Article  Google Scholar 

  13. Kumar, D., Jadhavar, P.S., Nautiyal, M., Sharma, H., Meena, P.K., Adane, L., Pancholia, S., and Chakra­borti, A.K., RSC Adv., 2015, vol. 5, p. 30819. https://doi.org/10.1039/C5RA03888J

    Article  CAS  Google Scholar 

  14. Hisano, T., Ichikawa, M., Nakagawa, A., and Tsuji, N.M., Chem. Pharm. Bull., 1975, vol. 23, p. 1910. https://doi.org/10.1248/cpb.23.1910

    Article  CAS  Google Scholar 

  15. Abdel-Jalil, R.J., Voelter, W., and Saeed, M., Tetrahedron Lett., 2004, vol. 45, p. 3475. https://doi.org/10.1016/j.tetlet.2004.03.003

    Article  CAS  Google Scholar 

  16. Mitobe, Y., Ito, S., Mizutani, T., Nagase, T., Sato, N., and Tokita, S., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 4075. https://doi.org/10.1016/j.bmcl.2009.06.025

    Article  CAS  PubMed  Google Scholar 

  17. Balakumar, C., Lamba, D., Kishore, P., Narayana, B.L., Rao, K.V., Rajwinder, K., Rao, A.R., Shireesha, B., and Narsaiah, B., Eur. J. Med. Chem., 2010, vol. 45, p. 4904. https://doi.org/10.1016/j.ejmech.2010.07.063

    Article  CAS  PubMed  Google Scholar 

  18. Juvale, K. and Wiese, M., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 6766. https://doi.org/10.1016/j.bmcl.2012.08.024

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, R., Guo, T., Zhang-Negrerie, D., Du, Y., and Zhao, K., Synthesis, 2013, vol. 45, p. 2998. https://doi.org/10.1055/s-0033-1338521

    Article  CAS  Google Scholar 

  20. Parashuram, L., Sreenivasa, S., Akshatha, S., Kumar, V.U., and Kumar, S., Asian J. Org. Chem., 2017, vol. 6, p. 1755. https://doi.org/10.1002/ajoc.201700467

    Article  CAS  Google Scholar 

  21. Sharif, M., Opalach, J., Langer, P., Beller, M., and Wu, X., RSC Adv., 2014, vol. 4, p. 8. https://doi.org/10.1039/C3RA45765F

    Article  CAS  Google Scholar 

  22. Hu, B-Q., Cui, J., Wang, L-X., and Yang, L., RSC Adv., 2016, vol. 6, p. 43950. https://doi.org/10.1039/C6RA05777B

    Article  CAS  Google Scholar 

  23. Banerjee, B., J. Nanochem., 2017, vol. 7, p. 389. https://doi.org/10.1007/s40097-017-0247-0

    Article  CAS  Google Scholar 

  24. Bandgar, B.P., More, P.E., Kamble, V.T., and Totre, J.V., Arkivoc, 2008, vol. 2008, part (xv), p. 1. https://doi.org/10.3998/ark.5550190.0009.f01

    Article  Google Scholar 

  25. More, P.E., Kamble, V.T., and Bandgar; B.P., Catal. Commun., 2012, vol. 27, p 30. https://doi.org/10.1016/j.catcom.2012.06.012

  26. Bandgar, B.P., More, P.E., Kamble, V.T., and Sawant, S.S., Aust. J. Chem., 2008, vol. 61, p. 1006. https://doi.org/10.1071/CH08202

    Article  CAS  Google Scholar 

  27. Kim, N.Y. and Cheon, C-H., Tetrahedron Lett., 2014, vol. 55, p. 2340. https://doi.org/10.1016/j.tetlet.2014.02.065

    Article  CAS  Google Scholar 

  28. To, T.A., Vo, Y.H., Nguyen, H.T.T., Ha, P.T.M., Doan, S.H., Doan, T.L.H., Li, S., Le, H.V., Tu, T.N., and Phan, N.T.S., J. Catal., 2019, vol. 370, p. 11. https://doi.org/10.1016/j.jcat.2018.11.031

    Article  CAS  Google Scholar 

  29. Zhou, J. and Fang, J., J. Org. Chem., 2011, vol. 76, p. 7730. https://doi.org/10.1021/jo201054k

    Article  CAS  PubMed  Google Scholar 

  30. Parua, S., Das, S., Sikari, S., Sinha, S., and Paul, N., J. Org. Chem., 2017, vol. 82, p. 7165. https://doi.org/10.1021/acs.joc.7b00643

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Chairman, Agricultural Development Trust Baramati, Dist. Pune, for providing all necessary facilities required for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. More.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, P.E., Khillare, S.L., Shinde, N.S. et al. Solvent-Free Synthesis of Quinazolinone Derivatives Catalyzed by Wet Zinc Oxide Nanopowder under Air Atmosphere. Russ J Org Chem 58, 119–124 (2022). https://doi.org/10.1134/S1070428022010171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022010171

Keywords:

Navigation