Skip to main content
Log in

Synthesis, Optimization, ADME Analysis, and Antioxidant Activity of 2-(Arylethynyl)-3-ethynylthiophenes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

2,3-Dialkynylthiophene derivatives were synthesized by using regio- and stereocontrolled Pd-catalyzed Sonogashira coupling and desilylation reactions. The synthesized compounds were analyzed in silico for their pharmacokinetic parameters, general toxicity, and drug scores. In particular, 3-ethynyl-2-(phenylethynyl)thiophene and 3-ethynyl-2-[(4-methylphenyl)ethynyl]thiophene were found to have relatively high drug scores and low toxicities. The antioxidant activity of the title compounds were evaluated by five different assays. 3-Ethynyl-2-(naphthalen-1-ylethynyl)thiophene displayed significant reducing and free radical scavenging activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Leonardi, A., Riva, C., Detoma, C., Boi, C., Pennini, R., and Sironi, G., Eur. J. Med. Chem., 1994, vol. 29, p. 551. https://doi.org/10.1016/0223-5234(94)90147-3

    Article  CAS  Google Scholar 

  2. Keri, R.S., Chand, K., Budagumpi, S., Somappa, S.B., Patil, S.A., and Nagaraja, B.M., Eur. J. Med. Chem., 2017, vol. 138, p. 1002. https://doi.org/10.1016/j.ejmech.2017.07.038

    Article  CAS  PubMed  Google Scholar 

  3. Algso, M.A.S., Kivrak, A., Konus, M., Yilmaz, C., and Kurt-Kizildogan, A., J. Chem. Sci., 2018, vol. 130, article no.. 119. https://doi.org/10.1007/s12039-018-1523-3

  4. Dadiboyena, S., Eur. J. Med. Chem., 2012, vol. 51, p. 17. https://doi.org/10.1016/j.ejmech.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  5. Mabkhot, Y.N., Kaal, N.A., Alterary, S., Al-Showiman, S.S., Farghaly, T.A., and Mubarak, M.S., Chem. Cent. J., 2017, vol. 11, p. 75. https://doi.org/10.1186/s13065-017-0307-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Z., Ku, T.C., and Seley-Radtke, K.L., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 4274. https://doi.org/10.1016/j.bmcl.2015.07.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lahsasni, S., Al-Hemyari, D.A.M., Ghabbour, H.A., Mabkhoot, Y.N., Aleanizy, F.S., Alothman, A.A., and Almarhoon, Z.M., J. Chem., 2018, vol. 2018, article ID 8536063. https://doi.org/10.1155/2018/8536063

  8. Chaudhary, S., Seth, M.K., and Vats, I.D., J. Cardiovasc. Pharmacol., 2013, vol. 61, p. 311. https://doi.org/10.1097/FJC.0b013e318280e16e

    Article  CAS  PubMed  Google Scholar 

  9. Unver, Y., Deniz, S., Celik, F., Akar, Z., Kucuk, M., and Sancak, K., J. Enzyme Inhib. Med. Chem., 2016, vol. 31, p. 89. https://doi.org/10.1080/14756366.2016.1206088

    Article  CAS  PubMed  Google Scholar 

  10. Kotha, S., Ghosh, A.K., and Deodhar, K.D., Synthesis, 2004, vol. 2004, p. 549. https://doi.org/10.1055/s-2004-815981

    Article  CAS  Google Scholar 

  11. Chinchilla, R. and Najera, C., Chem. Rev., 2007, vol. 107, p. 874. https://doi.org/10.1021/cr050992x

    Article  CAS  PubMed  Google Scholar 

  12. Kotha, S. and Ghosh, A.K., Med. Chem., 2006, vol. 45, p. 227.

    Google Scholar 

  13. Danodia, A.K., Saunthwal, R.K., Patel, M., Tiwari, R.K., and Verma, A.K., Org. Biomol. Chem., 2016, vol. 14, p. 6487. https://doi.org/10.1039/c6ob01049k

    Article  CAS  PubMed  Google Scholar 

  14. Best, W.M., Sims, C.G., and Winslade, M., Aust. J. Chem., 2001, vol. 54, p. 401. https://doi.org/10.1071/ch01024

    Article  CAS  Google Scholar 

  15. Kavak, E., Us, C.N., Yavuz, E., Kivrak, A., and Ozkut, M.I., Electrochim. Acta, 2015, vol. 182, p. 537. https://doi.org/10.1016/j.electacta.2015.09.148

    Article  CAS  Google Scholar 

  16. Wang, Y.J., Zhu, S., and Zou, L.H., Eur. J. Org. Chem., 2019, vol. 2019, p. 2179. https://doi.org/10.1002/ejoc.201900028

    Article  CAS  Google Scholar 

  17. Hassan, Z., Ullah, I., and Ali, I., Tetrahedron, 2013, vol. 69, p. 460. https://doi.org/10.1016/j.tet.2012.11.040

    Article  CAS  Google Scholar 

  18. Zora, M. and Kivrak, A., J. Org Chem., 2011, vol. 76, p. 9379. https://doi.org/10.1021/jo201685p

    Article  CAS  PubMed  Google Scholar 

  19. Zora, M., Kivrak, A., and Yazici, C., J. Org. Chem., 2011, vol. 76, p. 6726. https://doi.org/10.1021/jo201119e

    Article  CAS  PubMed  Google Scholar 

  20. Yue, D.W. and Larock, R.C., Org. Lett., 2004, vol. 6, p. 1037. https://doi.org/10.1021/ol0498996

    Article  CAS  PubMed  Google Scholar 

  21. Konus, M., Algso, M.A.S., Kavak, E., Kurt-Kizildogan, A., Yilmaz, C., and Kivrak, A., ChemistrySelect, 2020, vol. 5, p. 3700. https://doi.org/10.1002/slct.202000685

    Article  CAS  Google Scholar 

  22. Kivrak, A. and Algso, M., Abstracts of Papers of the American Chemical Society, 2017, vol. 254.

  23. Kumar, S., Kaur, P., and Kumar, V., Curr. Org. Chem., 2005, vol. 9 p. 1205. https://doi.org/10.2174/1385272054863989

    Article  CAS  Google Scholar 

  24. Naoe, S., Suzuki, Y., Hirano, K., Inaba, Y., Oishi, S., Fujii, N., and Ohno, H., J. Org. Chem., 2012, vol. 77, p. 4907. https://doi.org/10.1021/jo300771f

    Article  CAS  PubMed  Google Scholar 

  25. Montagnat, O.D., Lessene, G., and Hughes, A.B., Tetrahedron Lett., 2006, vol. 47, p. 6971. https://doi.org/10.1016/j.tetlet.2006.07.131

    Article  CAS  Google Scholar 

  26. Sohal, R.S., Aging: Clin. Exp. Res., 1993, vol. 5, p. 3. https://doi.org/10.1007/bf03324120

    Article  CAS  Google Scholar 

  27. Jensen, S.J.K., J. Mol. Struct. (THEOCHEM), 2003, vol. 666, p. 387. https://doi.org/10.1016/j.theochem.2003.08.037

    Article  CAS  Google Scholar 

  28. Valko, M., Jomova, K., Rhodes, C.J., Kuca, K., and Musilek, K., Arch. Toxicol., 2016, vol. 90, p. 1. https://doi.org/10.1007/s00204-015-1579-5

    Article  CAS  PubMed  Google Scholar 

  29. Leonarduzzi, G., Gamba, P., Gargiulo, S., Biasi, F., and Poll, G., Free Radicals Biol. Med., 2012, vol. 52, p. 19. https://doi.org/10.1016/j.freeradbiomed.2011.09.031

    Article  CAS  Google Scholar 

  30. Nikoleta-Kleio, D., Theodoros, D., and Roussos, P.A., Sci. Hortic. (Amsterdam, Neth.), 2020, vol. 259, article ID 108812. https://doi.org/10.1016/j.scienta.2019.108812

  31. Ricciutelli, M., Bartolucci, G., Campana, R., Salucci, S., Benedetti, S., Caprioli, G., Maggi, F., Sagratini, G., Vittori, S., and Lucarini, S., Food Chem., 2020, vol. 321, article ID 126726. https://doi.org/10.1016/j.foodchem.2020.126726

  32. Mugesh, G. and Singh, H.B., Chem. Soc. Rev., 2000, vol. 29, p. 347. https://doi.org/10.1039/a908114c

    Article  CAS  Google Scholar 

  33. Amorati, R. and Valgimigli, L., Free Radical Res., 2015, vol. 49, p. 633. https://doi.org/10.3109/10715762.2014.996146

    Article  CAS  Google Scholar 

  34. Amorati, R., Menichetti, S., Viglianisi, C., and Foti, M.C., Chem. Commun., 2012, vol. 48, p. 11904. https://doi.org/10.1039/c2cc36531f

    Article  CAS  Google Scholar 

  35. Kuhn, M., Falk, F.C., and Paradies, J., Org. Lett., 2011, vol. 13, p. 4100. https://doi.org/10.1021/ol2016093

    Article  CAS  PubMed  Google Scholar 

  36. Sander, T., Freyss, J., von Korff, M., Reich, J.R., and Rufener, C., J. Chem. Inf. Model., 2009, vol. 49, p. 232. https://doi.org/10.1021/ci800305f

    Article  CAS  PubMed  Google Scholar 

  37. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, article no. 42717. https://doi.org/10.1038/srep42717

  38. Konus, M., Aydemir, S., Yilmaz, C., Kivrak, A., Kizildogan, A.K., and Arpaci, P.U., Lett. Org. Chem., 2019, vol. 16, p. 415. https://doi.org/10.2174/1570178616666181116100232

    Article  CAS  Google Scholar 

  39. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Free Radicals Biol. Med., 1999, vol. 26, p. 1231. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  Google Scholar 

  40. Shi, H.L. and Niki, E., Lipids, 1998, vol. 33, p. 365. https://doi.org/10.1007/s11745-998-0216-8

    Article  CAS  PubMed  Google Scholar 

  41. Prieto, P., Pineda, M., and Aguilar, M., Anal. Biochem., 1999, vol. 269, p. 337. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  42. Benzie, I.F.F. and Strain, J.J., Anal. Biochem., 1996, vol. 239, p. 70. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank The Scientific and Technological Research Council of Turkey (project no. 114Z042) for providing microwave reactor and chemicals and Van Yüzüncü Yıl University (FYL-2016-5243; synthesis of compounds; FYL-2018-7439, financial support). A. Kivrak, C. Yılmaz, and M. Konus would like to acknowledge networking contribution by the COST Action CM1407 “Challenging Organic Syntheses Inspired by Nature from Natural Products Chemistry to Drug Discovery.” A. Kivrak also would like to acknowledge networking contribution by the COST Action CA17104 “New Diagnostic and Therapeutic Tools Against Multidrug Resistant Tumors.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Konus or A. Kivrak.

Ethics declarations

There are no conflicts to declare.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavak, E., Algso, M., Konus, M. et al. Synthesis, Optimization, ADME Analysis, and Antioxidant Activity of 2-(Arylethynyl)-3-ethynylthiophenes. Russ J Org Chem 57, 91–99 (2021). https://doi.org/10.1134/S1070428021010139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021010139

Keywords:

Navigation