Skip to main content
Log in

Utilization of Methylene Blue by Liquid-Phase Peroxide Oxidation in the Presence of Catalysts Based on Transition Metal Oxides and Cellulose

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Destruction of the methylene blue dye in aqueous solutions by liquid-phase peroxide oxidation in the presence of MeFe2O4 catalysts (Me = Mn, Co, Mg, Cu) supported on various types of cellulose was studied. The textural and acidic properties of the catalysts were tested. The specific surface area of the catalysts was found to be 68–256 m2 g–1, MeFe2O4 is the main phase of the catalysts, and the acidity of aqueous suspensions of catalysts is in the region of a neutral and slightly alkaline media (pH 7.3–9.4). Among the tested catalysts, the most efficient were MnFe2O4/microcrystalline cellulose (CMC) and MgFe2O4/cotton cellulose hydrolyzed (CCH). Their use gives 98% methylene blue conversion for 3 h of reaction time. The high efficiency of the MnFe2O4/CMC and MgFe2O4/CMC catalysts is apparently attributable to the high specific surface area provided by the microcrystalline cellulose support and the low ionization potential of Mg and Mn in the structure of the substitutional solid oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., and Oyewola, O.J., Results Eng., 2022, vol. 16, p. 100678. https://doi.org/10.1016/j.rineng.2022.100678

    Article  CAS  Google Scholar 

  2. Khan, M.D., Singh, A., Khan, M.Z., Tabraiz, S., and Sheikh, J., J. Water Proc. Eng., 2023, vol. 53, p. 103579. https://doi.org/10.1016/j.jwpe.2023.103579

    Article  Google Scholar 

  3. Pyrkova, M.V. and Chupartinova, E.M., Novoe v tekhnike i tekhnol. tekstil. i leg. prom-sti (New Eng. & Technology. of Textile Industry, 2013, pp. 400–402. https://www.elibrary.ru/ostclu.

    Google Scholar 

  4. Tret’yakova, A.E., Chernogortsev, E.A., and Safonov, V.V. ., Tekhnol. Tekstil. Prom-sti, 2016, no. 2, pp. 127–132. https://www.elibrary.ru/vvvwft.

    Google Scholar 

  5. Sverguzova, S.V., Shaikhiev, I.G., Khunadi, L., Aleinikova, N.A., and Bomba, I.V., Bezopasn., zashchita i okhrana okruzh. prir. sredy: fundam. i prikl. issled. (Environmental Safety & Protection: Fundam. & Appl. Res.), 2019, vol. 1, pp. 238–245. https://www.elibrary.ru/sfxzuj.

    Google Scholar 

  6. Goncharova, E.N. and Novikova, A.M., Naukoemkie Tekhnol. Innovats., 2016, vol. 6, pp. 24–28. https://www.elibrary.ru/ymeptf.

    Google Scholar 

  7. Satybaldieva, Zh.K. and Sadygalieva, G.K., Vest. Kyrgyz. Gos. Univ. im. N. Isanova, 2011, vol. 1, pp. 140–144. https://www.elibrary.ru/wkezhb.

    Google Scholar 

  8. Buldakova, A.M., Razv. Sovr. Molod. Nauki: Opyt Teor. Empirich. Analiza (Develop. Modern Young Sci.: Experience Theoretical Empirical Analysis), 2021. https://www.elibrary.ru/xalaax.

  9. Zhan, Y., Meng, Y., Li, W., Chen, Z., Yan, N., Li, Y., and Mouyou, T., Ind. Crops Products, 2018, vol. 122, pp. 422–429. https://doi.org/10.1016/j.indcrop.2018.06.043

    Article  CAS  Google Scholar 

  10. Pai, Z.P., Berdnikova, P.V., Tolstikov, A.G., Khlebnikova, T.B., and Selivanova, N.V. ., Kataliz v prom-sti, 2006, vol. 5, pp. 12–23. https://www.elibrary.ru/jwixrp.

    Google Scholar 

  11. Kholdeeva, O.A., and Trukhan, N.N., Russ. Chem. Rev., 2006, vol. 75, no. 5, pp. 411–432. https://doi.org/10.1070/RC2006v075n05ABEH001210

    Article  ADS  CAS  Google Scholar 

  12. Dodonov, V.A., Starostina, T.I., and Zinov’eva, T.I., Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, 2008, vol. 2, pp. 46–53. https://www.elibrary.ru/ujxnch.

    Google Scholar 

  13. Liotta, L.F., Gruttadauria, M., Di Carlo, G., Perrini, G., and Librando, V., J. Hazard. Mater., 2009, vol. 162, pp. 588–606. https://doi.org/10.1016/j.jhazmat.2008.05.115

    Article  CAS  PubMed  Google Scholar 

  14. Centi, G. and Perathoner, S. ., Appl. Catal. B, 2003, no. 41, pp. 15–29. https://doi.org/10.1016/S0926-3373(02)00198-4

    Article  CAS  Google Scholar 

  15. Namvunde, A.Sh., Pereshivko, O.P., Kon’kova, T.V., and Liberman, E.Yu., Uspekhi v khimii i khim. Tekhnologii, 2009, vol. 23, no. 10, pp. 28–32. https://www.elibrary.ru/rahjmj.

    Google Scholar 

  16. Taran, O.P., Ayusheev, A.B., Ogorodnikova, O.L., Prosvirin, I.P., and Isupova, L.A. ., Zhurn. sib. feder. un-ta. Ser. Khimiya J. Sib. Feder. Univ., Ser. Chem., 2013, vol. 6, no. 3, pp. 266–285. https://www.elibrary.ru/rbsoqd.

    CAS  Google Scholar 

  17. Yang, B., Zhou, P., Cheng, X., Li, H., Huo, X., and Zhang, Y. ., J. Colloid Interface Sci., 2019, vol. 555, pp. 383–393. https://doi.org/10.1016/j.jcis.2019.07.071

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Su, S., Liu, Y., Liu, X., Jin, W., and Zhao, Y., Chemosphere, 2019, vol. 218, pp. 83–92. https://doi.org/10.1016/j.chemosphere.2018.11.098

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Wang, Q., Tian, S., and Ning, P., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 643–649. https://doi.org/10.1021/ie403402q

    Article  CAS  Google Scholar 

  20. Sychev, A.Y. and Isak, V.G., Russ. Chem. Rev., 1995, vol. 64, no. 12, pp. 1105–1129. https://doi.org/10.1070/RC1995v064n12ABEH000195

    Article  ADS  Google Scholar 

  21. Savinykh, D.S., Kon’kova, T.V., Liberman, E.Yu., Pochitalkina, I.A., Pereshivko, O.P., Uspekhi v Khimii i Khim. Tekhnologii, 2009, vol. 22, no. 9, pp. 87–91. https://www.elibrary.ru/qzvnvx.

    Google Scholar 

  22. Bryanskaya A.V., Taran O.P., Ayusheeev A.B., Pel’tek S.E., Parmon V.N., Kataliticheskie, sorbtsionnye, mikrobiologicheskie i integrirovannye metody dlya zashchity i remidiatsii okruzhayushchei sredy (Catalytic, Sorption, Microbiological and Integrated Methods for Environmental Protection and Remediation), Novosibirsk: Izd. SB RAS), 2013. https://www.elibrary.ru/rztghf.

    Google Scholar 

  23. Tehrani-Baghaa, A.R., Gharagozloub, M., and Emamib, F., J. Env. Chem. Eng., 2016, vol. 4, pp. 1530–1536. https://doi.org/10.1016/j.jece.2016.02.014

    Article  CAS  Google Scholar 

  24. Ikonnikova, K.V., Minakova, T.S., and Sarkisov, Yu.S., Teoriya i praktika pH-metricheskogo opredeleniya kislotno-osnovnykh svoistv poverkhnosti tverdykh tel: uchebnoe posobie (Theory and Practice of pH-Metric Determination of Acidic/Basic Properties of the Surface of Solids: a Textbook), Tomsk: Izd. Tomsk. Politekh. Univ., 2011. https://www.elibrary.ru/titkej.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. I. Mishchenko or N. V. Gromov.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 488–497, August, 2023 https://doi.org/10.31857/S0044461823050067

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregubova, K.V., Mishchenko, T.I., Gurovskii, V.V. et al. Utilization of Methylene Blue by Liquid-Phase Peroxide Oxidation in the Presence of Catalysts Based on Transition Metal Oxides and Cellulose. Russ J Appl Chem 96, 552–561 (2023). https://doi.org/10.1134/S1070427223050063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223050063

Keywords:

Navigation