Skip to main content
Log in

Synthesis of Addition Poly(5-methyl-2-norbornene) in the Presence of Palladium Complexes Containing Acyclic Diaminocarbene Ligands

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Addition polymerization of a norbornene derivative in the presence of palladium complexes containing acyclic diaminocarbene ligands was studied. Using the polymerization of 5-methyl-2-norbornene as an example, it was shown that such complexes at activation with an organoborate (Na+[B(3,5-(CF3)2C6H5)4]) catalyze addition polymerization, thereby enabling synthesis of high-molecular-weight products with a unimodal molecular weight distribution. Analysis of the structure of the resulting polymer by 1H NMR spectroscopy made it possible to establish that the polymerization proceeds selectively, without destruction of the bicyclic norbornane fragment. The synthesized addition poly(5-methyl-2-norbornene) was characterized by differential scanning calorimetry, thermogravimetric analysis, and WAXD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kim, E.C., Kim, M.-J., Thi, Ho, L.N., Lee, W., Ka, J.-W., Kim, D.-G., Shin, T.J., Huh, K.M., Park, S., and Kim, Y.S., Macromolecules, 2021, vol. 54, no. 14, pp. 6762–6771. https://doi.org/10.1021/acs.macromol.1c00858

    Article  CAS  Google Scholar 

  2. Bermeshev, M.V. and Chapala, P.P., Prog. Polym. Sci., 2018, vol. 84, pp. 1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003

    Article  CAS  Google Scholar 

  3. Dong, J. and Wang, B., Polym. Chem., 2021, vol. 12, no. 32, pp. 4736–4747. https://doi.org/10.1039/D1PY00699A

    Article  CAS  Google Scholar 

  4. Karpov, G.O., Ren X.-K., Melnikova, E.K., and Bermeshev, M.V., Chem. Commun., 2021, vol. 57, no. 35, pp. 4255–4258. https://doi.org/10.1039/D1CC00546D

    Article  CAS  Google Scholar 

  5. Sundell, B.J., Lawrence, J.A., Harrigan, D.J., Lin, S., Headrick, T.P., O’Brien, J.T., Penniman, W.F., and Sandler, N., ACS Macro Lett., 2020, vol. 9, no. 9, pp. 1363–1368. https://doi.org/10.1021/acsmacrolett.0c00555

    Article  CAS  PubMed  Google Scholar 

  6. García-Loma, R. and Albéniz, A.C., Asian J. Org. Chem., 2019, vol. 8, no. 3, pp. 304–315. https://doi.org/10.1002/ajoc.201800646

    Article  CAS  Google Scholar 

  7. Mansouri, S., Omidvar, M., Mortazavi, S.M.M., and Ahmadjo, S., Macromol. React. Eng., 2022, vol. 16, no. 2, p. 2100052. https://doi.org/10.1002/mren.202100052

    Article  CAS  Google Scholar 

  8. Higgins, M.A., Maroon, C.R., Townsend, J., Wang, X., Vogiatzis, K.D., and Long, B.K., J. Polym. Sci., 2020, vol. 58, no. 18, pp. 2644–2653. https://doi.org/10.1002/pol.20200150

    Article  CAS  Google Scholar 

  9. Blank, F. and Janiak, C., Coord. Chem. Rev., 2009, vol. 253, no. 7–8, pp. 827–861. https://doi.org/10.1016/j.ccr.2008.05.010

    Article  CAS  Google Scholar 

  10. Pérez-Ortega, I. and Albéniz, A.C., Polym. Chem., 2021, vol. 12, no. 41, pp. 5963–5969. https://doi.org/10.1039/D1PY01165K

    Article  Google Scholar 

  11. Bermesheva, E.V., Medentseva, E.I., Khrychikova, A.P., Wozniak, A.I., Guseva, M.A., Nazarov, I.V., Morontsev, A.A., Karpov, G.O., Topchiy, M.A., Asachenko, A.F., Danshina, A.A., Nelyubina, Y.V., and Bermeshev, M.V., ACS Catal., 2022, vol. 12, no. 24, pp. 15076–15090. https://doi.org/10.1021/acscatal.2c04345

    Article  CAS  Google Scholar 

  12. Jung, I.G., Lee, Y.T., Choi, S.Y., Choi, D.S., Kang, Y.K., and Chung, Y.K., J. Organomet. Chem., 2009, vol. 694, no. 2, pp. 297–303. https://doi.org/10.1016/j.jorganchem.2008.10.058

    Article  CAS  Google Scholar 

  13. Singh, C., Kumar, A. and Huynh, H.V., Inorg. Chem., 2020, vol. 59, no. 12, pp. 8451–8460. https://doi.org/10.1021/acs.inorgchem.0c00886

    Article  CAS  PubMed  Google Scholar 

  14. Wozniak, A.I., Bermesheva, E.V., Borisov, I.L., Volkov, A.V., Petukhov, D.I., Gavrilova, N.N., Shantarovich, V.P., Asachenko, A.F., Topchiy, M.A., Finkelshtein, E.S., and Bermeshev, M.V., J. Membr. Sci., 2022, vol. 641, pp. 119848. https://doi.org/10.1016/j.memsci.2021.119848

    Article  CAS  Google Scholar 

  15. Tskhovrebov, A.G., Luzyanin, K.V., Dolgushin, F.M., Guedes da Silva, M.F.C., Pombeiro, A.J.L., and Kukushkin, V.Y., Organometallics, 2011, vol. 30, no. 12, pp. 3362–3370. https://doi.org/10.1021/om2002574

    Article  CAS  Google Scholar 

  16. Kinzhalov, M.A., Luzyanin, K.V., Boyarskiy, V.P., Haukka, M., and Kukushkin, V.Y., Organometallics, 2013, vol. 32, no. 18, pp. 5212–5223. https://doi.org/10.1021/om4007592

    Article  CAS  Google Scholar 

  17. Katkova, S.A., Kinzhalov, M.A., Tolstoy, P.M., Novikov, A.S., Boyarskiy, V.P., Ananyan, A.Y., Gushchin, P.V., Haukka, M., Zolotarev, A.A., Ivanov, A.Y., Zlotsky, S.S., and Kukushkin, V.Y., Organometallics, 2017, vol. 36, no. 21, pp. 4145–4159. https://doi.org/10.1021/acs.organomet.7b00569

    Article  CAS  Google Scholar 

  18. Boyarskaya, D.V., Kinzhalov, M.A., Suslonov, V.V., and Boyarskiy, V.P., Inorg. Chim. Acta, 2017, vol. 458, pp. 190–198. https://doi.org/10.1016/j.ica.2017.01.008

    Article  CAS  Google Scholar 

  19. Bermesheva, E.V., Nazarov, I.V., Kataranova, K.D., Khrychikova, A.P., Zarezin, D.P., Melnikova, E.K., Asachenko, A.F., Topchiy, M.A., Rzhevskiy, S.A., and Bermeshev, M.V., Polym. Chem., 2021, vol. 12, no. 43, pp. 6355–6362. https://doi.org/10.1039/D1PY01039E

    Article  CAS  Google Scholar 

  20. Bermesheva, E.V., Wozniak, A.I., Andreyanov, F.A., Karpov, G.O., Nechaev, M.S., Asachenko, A.F., Topchiy, M.A., Melnikova, E.K., Nelyubina, Y.V., Gribanov, P.S., and Bermeshev, M.V., ACS Catal., 2020, vol. 10, no. 3, pp. 1663–1678. https://doi.org/10.1021/acscatal.9b04686

    Article  CAS  Google Scholar 

  21. Kinzhalov, M.A. and Luzyanin, K.V., Russ. J. Inorg. Chem., 2022, vol. 67, no. 1, pp. 48–90. https://doi.org/10.1134/S0036023622010065

    Article  CAS  Google Scholar 

  22. Huynh, H.V., Han, Y., Jothibasu, R., and Yang, J.A., Organometallics, 2009, vol. 28, no. 18, pp. 5395–5404. https://doi.org/10.1021/om900667d

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the President of the Russian Federation MD-497.2022.1.3 (agreement no. 075-15-2022-359 от 05.05.22).

Author information

Authors and Affiliations

Authors

Contributions

A.P. Khrychikova, E.I. Medentseva, and E.V. Bermesheva developed a method of addition polymerization and conducted studies on addition polymerization of 5-methyl-2-norbornene, and also studied the properties of the resulting polymer; A.I. Wozniak synthesized the starting monomer (5-methyl-2-norbornene); M.V. Kashina and M.A. Kinzhalov synthesized Pd-complexes with acyclic diaminocarbene ligands required for research; M.V. Bermeshev participated in the interpretation of the obtained results and made the main contribution to writing the text of the manuscript.

Corresponding author

Correspondence to M. V. Bermeshev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 10, pp. 1312–1319, October, 2022 https://doi.org/10.31857/S0044461822100103

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrychikova, A.P., Medentseva, E.I., Bermesheva, E.V. et al. Synthesis of Addition Poly(5-methyl-2-norbornene) in the Presence of Palladium Complexes Containing Acyclic Diaminocarbene Ligands. Russ J Appl Chem 95, 1603–1610 (2022). https://doi.org/10.1134/S1070427222100111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222100111

Keywords:

Navigation