Skip to main content
Log in

Polyethylene-Based Oxo-Degradable Nanocomposite Film

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A polyethylene-based composite film with a different content of prooxidant nanoparticles (iron carboxylate), which is degradable under the action of ultraviolet rays, was fabricated. The structure of oxo-degradable composite films was studied by means of infrared spectroscopy, X-ray diffraction analysis, and atomic force microscopy, and a change in the structure under the influence of ultraviolet radiation was demonstrated. It was found that, depending on the content of the prooxidant, it is possible to regulate the film degradation time span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Jeon, J.-M., Park, S.-J., Choi, T.-R., Park, J.-H., Yang, Y.-H., and Yoon, J.-J., Polym. Degrad. Stab., 2021, no. 191, ID 109662. https://doi.org/10.1016/j.polymdegradstab.2021.109662

    Article  Google Scholar 

  2. Goel, V., Luthra, P., Kapur, G.S., Ramakumar, S.V., J. Polym. Environ., 2021, no. 29, pp. 3079–3104. https://doi.org/10.1007/s10924-021-02099-1

    Article  Google Scholar 

  3. Rogovina, S., Aleksanyan, K., Prut, E., and Gorenberg, A., Eur. Polym.J., 2013, no. 49, pp. 194–202. https://doi.org/10.1016/j.eurpolymj.2012.10.002

    Article  Google Scholar 

  4. Turdikulov, I.H., Mamadiyorov, B.N., Saidmuhammedova, M.Q., and Atakhanov, A.A., Open J. Chem., 2020, vol. 6, no. 1, pp. 30–36. https://doi.org/10.17352/ojc.000021

    Article  Google Scholar 

  5. Makhijani, K. and Sharma, S.K., Pollut. Res., 2016, vol. 35, no. 3, pp. 651–658.

    CAS  Google Scholar 

  6. Tertyshnaya, Yu.V. and Podzorova, M.V., Russ. J. Appl. Chem., 2021, vol. 94, pp. 639–646. https://doi.org/10.1134/S1070427221050128 

    Article  CAS  Google Scholar 

  7. Gomes, L.B., Klein, J.M., Brandaliseb, R.N., Zeni, M., Zoppas, B.C., and Grisa, A.M.C., Mater. Res., 2014, vol. 17(suppl 1), pp. 121–126. https://doi.org/10.1590/1516-1439.224713

    Article  CAS  Google Scholar 

  8. Abramov, V.V. and Chalaya, N.M., Plast. Massy, 2019, no. 5–6, pp. 63–66. https://doi.org/10.35164/0554-2901-2019-5-6-63-66

    Article  Google Scholar 

  9. Jeon, H.J. and Kim, M.N., Eur. Polym.J., 2014 (Suppl 1), 52, pp. 146–153. https://doi.org/10.1016/j.eurpolymj.2014.01.007

    Article  CAS  Google Scholar 

  10. Wunderlich, B., Physics of Macromolecules. V. 1. Crystal Structure, Morphology, Defects, Amsterdam: Elsevier, 1973.

    Google Scholar 

  11. Martynov, M.A. and Vylegzhanina, K.A., Rentgenografiya polimerov (Radiography of Polymers), Leningrad: Khimiya, 1972.

    Google Scholar 

  12. Korchagin, V.I., Protasov, A.V., and Erofeeva, N.V., Plast. massy., 2016, no. 9–10, pp. 37–42. https://doi.org/10.35164/0554-2901-2016-9-10-37-42

    Article  Google Scholar 

  13. Cichy, B., Kwiecieñ, J., Pitkowska, M., Kuzdza1, E., Gibas, E., and Rymarz, G., Pol. J. Chem. Technol., 2010, vol. 12, no. 4, pp. 44–52. https://doi.org/10.2478/v10026-010-0049-3

    Article  Google Scholar 

  14. Roe-Sosa, A., Estrada, R.M., Calderas, F., Sanchez-Arevalo, F., Manero, O., and Orta L. de Velasquez, M.T., J. Appl. Polym. Sci., 2015, vol. 132, no. 43, ID 42721. https://doi.org/10.1002/app.42721

    Article  CAS  Google Scholar 

  15. Gulmine, J.V., Janissek, P.R., Heise, H.M., and Akcelrud, L., Polym. Degrad. Stab., 2003, vol. 79, no. 3, pp. 385–397. https://doi.org/10.1016/S0141-3910(02)00338-5

    Article  CAS  Google Scholar 

  16. Gorokhovatskii, Yu., Victorovitch, A., Temnov, D., Tazenkov, B., Aniskina, L., and Chistiakova, O., IZVESTIA: Scientific Journal of Herzen University, 2006, no. 6 (15) , pp. 69–75.

    Google Scholar 

  17. Sebaa, M. and Servens, C., Pouyet, J., J. Appl. Polym. Sci., 1992, vol. 45, no. 6, pp. 1049–1053. https://doi.org/10.1002/app.1992.070450614

    Article  CAS  Google Scholar 

  18. Roy, P.K., Surekha, P., Raman, R., and Rajagopal, C., J. Appl. Polym. Sci., 2009, no. 94, pp. 1033–1039. https://doi.org/10.1016/j.polymdegradstab.2009.04.025

    Article  CAS  Google Scholar 

  19. Khabbaz, F., Albertsson, A.C., and Karlson, S., Polym. Degrad. Stab., 1999, no. 63, pp. 27–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Atakhanov.

Ethics declarations

The authors declare no conflict of interests requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 8, pp. 1028–1035, August, 2022 https://doi.org/10.31857/S0044461822080102

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atakhanov, A.A., Turdikulov, I.K. & Ashurov, N.S. Polyethylene-Based Oxo-Degradable Nanocomposite Film. Russ J Appl Chem 95, 1161–1168 (2022). https://doi.org/10.1134/S1070427222080110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222080110

Keywords:

Navigation