Skip to main content
Log in

Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Li7La3Zr2O12-based compounds are today the most promising solid electrolytes for high-energy lithium and lithium–ion power sources. The solid electrolytes Li7–x–3yAlyLa3Zr2−xTaxO12 (x = 0.3–0.6, y = 0.05–0.20) were prepared by the sol–gel method. The effect of doping of Li7La3Zr2O12 in Zr and Li sublattices with tantalum (Ta5+) and aluminum (Al3+) on the crystal structure, morphology, and electrical conductivity of this compound was examined. The compounds obtained had the cubic structure (space group Ia-3d). The resistance of the solid electrolytes obtained was determined by the electrochemical impedance method. The compounds Li6.25Al0.15La3Zr1.7Ta0.3O12, Li6.3Al0.10La3Zr1.6Ta0.4O12, Li6.2Al0.10La3Zr1.5Ta0.5O12, and Li6.25Al0.05La3Zr1.4Ta0.6O12 have the maximal lithium-ion conductivity (~2.0 × 10–4 S cm–1 at 20°C). The heat treatment at 1150°C for 1 h is optimum for forming highly conducting and dense ceramic membranes. Symmetrical cells with Li electrodes show stable behavior in cycling. The solid electrolytes obtained can be used in lithium power sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tarascon, J.M. and Armand, M., Nature, 2001, vol. 414, pp. 359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  2. Yaroslavtsev, A.B., Russ. Chem. Rev., 2016, vol. 85, pp. 1255–1276. http://iopscience.iop.org/article/10.1070/RCR4634/pdf. 

    Article  CAS  Google Scholar 

  3. Bensalah, N. and Dawood, H., Mater. Sci. Eng., 2016, vol. 5, pp. 1–21. https://doi.org/10.4172/2169-0022.1000258

    Article  CAS  Google Scholar 

  4. Lu, J., Chen, Z., Pan, F., Cui, Y., and Amine, K., Electrochem. Energy Rev., 2018, vol. 1, pp. 35–53. https://doi.org/10.1007/s41918-018-0001-453

    Article  CAS  Google Scholar 

  5. Murugan, R., Thangadurai, V., and Weppner, W., Angew. Chem. Int. Ed., 2007, vol. 46, pp. 7778–7781. https://doi.org/10.1002/anie.200701144

    Article  CAS  Google Scholar 

  6. Ramakumar, S., Deviannapoorani, C., Dhivya, L., Shankar, L.S., and Murugan, R., Prog. Mater. Sci., 2017, vol. 88, pp. 325–411. https://doi.org/10.1016/j.pmatsci.2017.04.007

    Article  CAS  Google Scholar 

  7. Dermenci, K.B., Cekic, E., and Turan, S., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 9860–9867. https://doi.org/10.1016/j.ijhydene.2016.03.197

    Article  CAS  Google Scholar 

  8. Dermenci, K.B. and Turan, S., Ionics, 2020, vol. 26, pp. 4757–4762. https://doi.org/10.1007/s11581-020-03685-4

    Article  CAS  Google Scholar 

  9. Zhao, P., Xiang, Y., Wen, Y., Li, M., Zhu, X., Zhao, S., Jin, Z., Ming, H., and Cao, G., J. Eur. Ceram. Soc., 2018, vol. 38, pp. 5454–5462. https://doi.org/10.1016/j.jeurceramsoc.2018.08.037

    Article  CAS  Google Scholar 

  10. Zhao, P., Cao, G., Jin, Z., Ming, H., Wen, Y., Xu, Y., Zhu, X., Xiang, Y., and Zhang, S., Mater. Des., 2018, vol. 139, pp. 65–71. https://doi.org/10.1016/j.matdes.2017.10.067

    Article  CAS  Google Scholar 

  11. Li, Y., Wang, C.A., Xie, H., Cheng, J., and Goodenough, J.B., Electrochem. Commun., 2011, vol. 13, pp. 1289–1292. https://doi.org/10.1016/j.elecom.2011.07.008

    Article  CAS  Google Scholar 

  12. Wang, Y. and Lai, W., Electrochem. Solid-State Lett., 2012, vol. 5, pp. A68–A71. https://doi.org/10.1149/2.024205esl

    Article  CAS  Google Scholar 

  13. Gong, Y., Liu, Z.G., Jin, Y.J., Ouyang, J.H., Chen, L., and Wang, Y.J., Ceram. Int., 2019, vol. 45, pp. 18439–18444. https://doi.org/10.1016/j.ceramint.2019.06.061

    Article  CAS  Google Scholar 

  14. Janani, N., Ramakumar, S., Kannan, S., and Murugan, R., J. Am. Ceram. Soc., 2015, vol. 98, pp. 2039–2046. https://doi.org/10.1111/jace.13578

    Article  CAS  Google Scholar 

  15. Tsai, C.-L., Roddatis, V., Chandran, C.V., Ma, Q., Uhlenbruck, S., Bram, M., and Guillon, O., ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 10617–10626. https://doi.org/10.1021/acsami.6b00831

    Article  CAS  PubMed  Google Scholar 

  16. Buschmann, H., Berendts, S., Mogwitz, B., and Janek, J., J. Power Sources, 2012, vol. 206, pp. 236–244. https://doi.org/10.1016/j.jpowsour.2012.01.094

    Article  CAS  Google Scholar 

  17. Huang, M., Shoji, M., Shen, Y., Nan, C.W., Munakata, H., and Kanamura, K., J. Power Sources, 2014, vol. 261, pp. 206–211. https://doi.org/10.1016/j.jpowsour.2014.03.070

    Article  CAS  Google Scholar 

  18. Li, Y., Han, J.T., Wang, C.A., Xie, H., and Goodenough, J.B., J. Mater. Chem., 2012, vol. 22, pp. 15357–15361. https://doi.org/10.1039/c2jm31413d

    Article  CAS  Google Scholar 

  19. Il’ina, E.A., Andreev, O.L., Antonov, B.D., and Batalov, N.N., J. Power Sources, 2012, vol. 201, pp. 169–173. https://doi.org/10.1016/j.jpowsour.2011.10.108

    Article  CAS  Google Scholar 

  20. Il’ina, E.A., Lyalin, E.D., Antonov, B.D., and Pankratov, A.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 12, pp. 1657−1663. https://doi.org/10.1134/S107042721912005X 

    Article  Google Scholar 

  21. Il’ina, E.A., Lyalin, E.D., Antonov, B.D., Pankratov, A.A., and Vovkotrub, E.G., Ionics, 2020, vol. 26, pp. 3239–3247. https://doi.org/10.1007/s11581-020-03492-x

    Article  CAS  Google Scholar 

  22. Xie, H., Alonso, J.A., Li, Y., Fernandez-Diaz, M.T., and Goodenough, J.B., Chem. Mater., 2011, vol. 23, pp. 3587–3589. https://doi.org/10.1021/cm201671k

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Funding

The synthesis of the solid electrolytes and study of their composition, morphology, and electrical conductivity were financially supported by the Russian Foundation for Basic Research and Sverdlovsk oblast, project no. 20-43-660015. The behavior of the symmetric cell with Li was studied within the framework of state budget themes of the Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences (research program no. 122020100210-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Il’ina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 627–635, May, 2022 https://doi.org/10.31857/S0044461822050097

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’ina, E.A., Lyalin, E.D., Antonov, B.D. et al. Li7La3Zr2O12-Based Solid Electrolytes Codoped with Ta5+ and Al3+ Ions for Lithium Power Sources. Russ J Appl Chem 95, 689–697 (2022). https://doi.org/10.1134/S1070427222050093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222050093

Keywords:

Navigation