Skip to main content
Log in

Detection of Alkylhydrazine Impurities in Hydrocarbon Rocket Propellants by Chromatography and Mass Spectrometry

  • High-Energy Compounds
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Procedures for qualitative and quantitative analysis of microimpurities of alkylhydrazines and their transformation products in hydrocarbon rocket propellants Naftil, Syntin, and Detsilin by gas and liquid chromatography with on-line and off-line mass-spectrometric detection were developed. Reliable detection of an unsymmetrical dimethylhydrazine impurity in Naftil multicomponent propellant and in its mixtures with other hydrocarbon propellants is possible in the form of thiosemicarbazides by reversed-phase high-performance liquid chromatography and matrix-assisted laser desorption/ionization mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 2.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Spravochnik po toksikologii i gigienicheskim normativam (PDK) potentsial’no opasnykh khimicheskikh veshchestv (Handbook on Toxicology and Hygienic Norms (MPC) of Potentially Hazardous Chemical Substances), Kushneva, V.S. and Gorshkova, R.B., Eds., Moscow: IzdAT, 1999, p. 134.

REFERENCES

  1. Yanovskii, L.S., Kharin, A.A., and Babkin, V.I., Osnovy khimmotologii (Principles of Chemmotology), Moscow: Direkt-Media, 2019.

    Google Scholar 

  2. Ekologicheskaya bezopasnost’ raketno-kosmicheskoi deyatel’nosti (Environmental Safety of Space Rocket Activity), Kasimov, N.S., Ed., Moscow: Sputnik, 2015.

    Google Scholar 

  3. Kolesnikov, S.V., Okislenie nesimmetrichnogo gidrazina (geptila) i identifikatsiya produktov ego prevrashcheniya pri prolivakh (Oxidation of Unsymmetrical Hydrazine (UDMH) and Identification of Its Transformation Products at Spillages), Novosibirsk: SibAK, 2014.

    Google Scholar 

  4. Buryak, A.K. and Serdyuk, T.M., Russ. Chem. Rev., 2013, vol. 82, no. 4, pp. 369–392. https://doi.org/10.1070/RC2013v082n04ABEH004304

    Article  CAS  Google Scholar 

  5. Bolotnik, T.A., Smolenkov, A.D., Smirnov, R.S., and Shpigun, O.A., Moscow Univ. Chem. Bull., 2015, vol. 70, no. 4, pp. 168–174. https://doi.org/10.3103/S0027131415040021 

    Article  Google Scholar 

  6. Ul’yanovskii, N.V., Kosyakov, D.S., Pokryshkin, S.A., and Bogolitsyn, K.G., J. Anal. Chem., 2015, vol. 70, pp. 1553–1560. https://doi.org/10.1134/S1061934815130080 

    Article  Google Scholar 

  7. Kenessov, B., Koziel, J., Grotenhuis, T., and Carlsen, L., Anal. Chim. Acta, 2010, vol. 674, no. 1, pp. 32–39. https://doi.org/10.1016/j.aca.2010.05.040

    Article  CAS  PubMed  Google Scholar 

  8. Rodin, I.A., Anan’eva, I.A., Smolenkov, A.D., and Shpigun, O.A., J. Anal. Chem., 2010, vol. 65, pp. 1405–1410. https://doi.org/10.1134/S1061934810130150 

    Article  CAS  Google Scholar 

  9. Paramonov, S.A., Ul’yanov, A.V., and Buryak, A.K., Russ. Chem. Bull., 2010, vol. 59, pp. 517–522. https://doi.org/10.1007/s1117201001410 

    Article  Google Scholar 

  10. Smolenkov, A.D., Rev. J. Chem., 2012, vol. 2, no. 4, pp. 329–354. https://doi.org/10.1134/S2079978012040048 

    Article  Google Scholar 

  11. Polunin, K.E., Ul’yanov, A.V., Polunina, I.A., and Buryak, A.K., Russ. J. Appl. Chem., 2020, vol. 93, no. 6, pp. 861–871. https://doi.org/10.1134/S1070427220060136 

    Article  Google Scholar 

  12. Smolenkov, A.D. and Shpigun, O.A., Talanta, 2012, vol. 102, pp. 93–100. https://doi.org/10.1016/j.talanta.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  13. Kosyakov, D.S., Ul’yanovskii, N.V., Pikovskoi, I.I., Kenessov, B., Bakaikina, N.V., Zhubatov, Z., and Lebedev. A.T., Chemosphere, 2019, vol. 228, pp. 335–344. https://doi.org/10.1016/j.chemosphere.2019.04.141

    Article  CAS  PubMed  Google Scholar 

  14. Kitaev, Yu.P. and Buzykin, B.I., Gidrazony (Hydrazones), Moscow: Nauka, 1974.

    Google Scholar 

  15. Alimpiev, S.S., Grechnikov, A.A., and Nikiforov, S.M., Physics-Uspekhi, 2015, vol. 58, pp. 191–195. https://doi.org/10.3367/UFNe.0185.201502f.0207

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Center of Shared Use at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, for the equipment submitted for the study.

Funding

The study was performed within the framework of the government assignment for the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Buryak.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 195#x2013;205, January, 2021 https://doi.org/10.31857/S0044461821020079

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polunin, K.E., Ul’yanov, A., Polunina, I.A. et al. Detection of Alkylhydrazine Impurities in Hydrocarbon Rocket Propellants by Chromatography and Mass Spectrometry. Russ J Appl Chem 94, 182–191 (2021). https://doi.org/10.1134/S1070427221020075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020075

Keywords:

Navigation