Skip to main content
Log in

Optimization of Combustion Efficiency Using a Fuel Composition Based on CH4 and/or H2

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we investigate the exergy analysis of the combustion chamber supplied by different fuel compositions based mainly on methane and/or hydrogen in order to select the optimum fuel composition case for the economic combustion. For this, the analysis process considers the variation for both parameters: mass flow rate and equivalence ratio. This is to characterize all fuel cases. The calculations are based on the prediction of three variables: the exergy destruction and the exergy universal efficiency, the contribution of exergy destruction sources and the effect of fuel composition on these sources. Therefore, all computations of this investigation are carried out by the Cycle-Tempo Release to determine the appropriate fuel composition. In the overall, the obtained results show that the hydrogen enrichment methane flame has an impact on the combustion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ilbas, M., Yılmaz, I., and Kaplan, Y., Int. J. Hydrogen Energy, 2005, vol. 30, no. 10, pp. 1139–1147. https://doi.org/10.1016/j.ijhydene.2004.10.016

    Article  CAS  Google Scholar 

  2. Hu, E., Huang, Z., Zheng, J., Li, Q., and He, J., Int. J. Hydrogen Energy, 2009, vol. 34, no. 15, pp. 6545– 6557. https://doi.org/10.1016/j.ijhydene.2009.05.080

    Article  CAS  Google Scholar 

  3. Khanafer, K., and Aithal, S.M., Int. J. Heat and Mass.Transfer, 2011, vol. 54, no. 23, pp. 5030–5038. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.017

    Article  CAS  Google Scholar 

  4. Bouras, F., and Khaldi, F., Heat and Mass Transfer, 2016, vol. 52, no. 4, pp. 671–681.

    Article  CAS  Google Scholar 

  5. Bingue, J.P., Saveliev, A.V., and Kennedy, L.A., Int. J. Hydrogen Energy, 2004, vol. 29, no. 13, pp. 1365–1370. https://doi.org/10.1016/j.ijhydene.2004.01.002

    Article  CAS  Google Scholar 

  6. Bouras, F., and Khaldi, F., J. Appl Mechanics & Tech. Physics, 2016, vol. 57, no. 1, pp. 20–26.

    Article  Google Scholar 

  7. Zhang, Y., Huang, Z., Wei, L., Zhang, J., and Lawb, C.K., Combust. & Flame, 2012, vol. 159, no. 3, pp. 918–931. https://doi.org/10.1016/j.combustflame.2011.09.010

    Article  CAS  Google Scholar 

  8. Ayoub, M., Rottier, C., Carpentier, S., Villermaux, C.M., Boukhalfa, A., and Honore, D., Int. J. Hydrogen Energy, 2012, vol. 37, no. 8, pp. 6912–6921. https://doi.org/10.1016/j.ijhydene.2012.01.018

    Article  CAS  Google Scholar 

  9. Akansu, S.O., Kahraman, N., and Çeper, B., Int. J. Hydrogen Energy, 2007, vol. 32, no. 17, pp. 4279–4284. https://doi.org/10.1016/j.ijhydene.2007.05.034

    Article  CAS  Google Scholar 

  10. Alavandi, S.K., and Agrawal, A.K., Int. J. Hydrogen Energy, 2008, vol. 33, no. 4, pp. 1407–1415. https://doi.org/10.1016/j.ijhydene.2007.12.005

    Article  CAS  Google Scholar 

  11. Demuynck, J., De Paepe, M., Huisseune, H., Sierens, R., Vancoillie, J., and Verhelst, S., Appl. Thermal Eng., 2011, vol. 31, no. 6, pp. 1220–1228. https://doi.org/10.1016/j.applthermaleng.2010.12.023

    Article  CAS  Google Scholar 

  12. Tseng, C.J, Int. J. Hydrogen Energy, 2002, vol. 27, no. 6, pp. 699–707. https://doi.org/10.1016/S0360-3199(01)00173-2

    Article  CAS  Google Scholar 

  13. Kim, H.S., Arghode, V.K., Linck, M.B., and Gupta, A.K., Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, pp. 1054–1062. https://doi.org/10.1016/j.ijhydene.2008.10.034

    Article  CAS  Google Scholar 

  14. Bouras, F., Attia, M.E., Khaldi, F., and Si-Ameur, M., Int. J. Hydrogen Energy, 2017, vol. 42, no. 30, pp. 8932– 8939. https://doi.org/10.1016/j.ijhydene.2016.11.146

    Article  CAS  Google Scholar 

  15. Ameri, M., and Enadi, N., J. Power Technologies, 2012, vol. 92, no. 3, pp. 183–191. http://papers.itc.pw.edu.pl/index.php/JPT/article/view/331/504.

    Google Scholar 

  16. Bouras, F., Attia, M.E.H., and Khaldi, F. Envi Proces, 2015,vol. 2, pp. 233–242 https://doi.org/10.1007/s40710-015-0102-6

  17. Yilmazoğlu, M.Z., and Amirabedin, E., J. Thermal Sci. & Technol., 2011, vol. 31, no. 2, pp. 41–50.

    Google Scholar 

  18. Mali Sanjay, D., and Mehta, N.S., Int. J. Adv. Eng. Res. & Studies, 2012, vol. 1, no. 3, pp. 245–247.

    Google Scholar 

  19. Owen, F.K., Spadaccini, L.J., and Bowman, C.T., Proc. Combust. Inst., 1976, vol. 16, no. 1, pp. 105–117.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Directorate General for Scientific Research and Technological Development (PRFU_ N°. B00L02UN390120200003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Bouras.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouras, F., Khaldi, F. Optimization of Combustion Efficiency Using a Fuel Composition Based on CH4 and/or H2. Russ J Appl Chem 93, 1954–1959 (2020). https://doi.org/10.1134/S1070427220120198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120198

Keywords:

Navigation