Skip to main content
Log in

Attrition of Particles in Fluidized Bed Apparatuses

  • Specific Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The process of particle attrition in an apparatus with a fluidized bed of material has been investigated. A mathematical model of the process of particle attrition was proposed, which makes it possible to determine the density of the distribution function of particles by weight, as well as the degree of attrition depending on the average residence time in the bed. An experimental study of the particle attrition was carried out on the example of granules of ammonium sulfate in an apparatus with a spouted bed and the adequacy of the proposed model to the actual process was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Romankov, P.G., Frolov, V.F., and Flisyuk, O.M., Massoobmennye protsessy khimicheskoi tekhnologii (Mass Transfer Processes of Chemical Technology), St. Petersburg: Khimizdat, 2011.

    Google Scholar 

  2. Frolov, V.F. and Flisyuk, O.M., Granulirovanie v psevdoozhizhennom sloe (Fluid bed granulation.), St. Petersburg: Khimizdat, 2008.

    Google Scholar 

  3. Jiménez-García, G., Aguilar-López, R., and Maya-Yescas, R., Fuel, 2011, vol. 90, no. 12, pp. 3531–3541. https://doi.org/10.1016/j.fuel.2011.03.045

    Article  CAS  Google Scholar 

  4. Uzi, F., Kalman, H., and Levy, A., Powder Technol., 2016, vol. 298, pp. 30–41. https://doi.org/10.1016/j.powtec.2016.05.014

    Article  CAS  Google Scholar 

  5. Tadamasa, A. and Takahashi, K., J. Chem. Eng. Jpn., 2011, vol. 44, pp. 882–887. https://doi.org/10.1252/jcej.10we311

    Article  CAS  Google Scholar 

  6. Laarhoven, B., Wiers, S.E., Schaafsma, S.H., and Meesters, G.M., Chem. Eng. Sci., 2008, vol. 63, pp. 1361–1369. https://doi.org/10.1016/j.ces.2007.07.006

    Article  CAS  Google Scholar 

  7. Gamble, J., Hoffmann, M., Hughes, H., Hutchins, P., and Tobyn, M., Int. J. Pharm., 2014, vol. 470, pp. 77–87. https://doi.org/10.1016/j.ijpharm.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  8. Azimian, M., Reiter, A., and Bart, H., Powder Technol., 2015, vol. 289, pp. 169–181. https://doi.org/10.1016/j.powtec.2015.11.055

    Article  CAS  Google Scholar 

  9. Ogurtsov, A.V., Zhukov, V.P., Ovchinnikov, L.N., and Zbronski, D., Izv. Vuzov. Khimiya Khim. Tekhnologiya, 2003, vol. 46, no. 2, pp. 108–111.

    CAS  Google Scholar 

  10. Ogurtsov, A.V., Zhukov, V.P., Mizonov, V.E., and Ovchinnikov, L.N., Izv. Vuzov. Khimiya Khim. Tekhnologiya, 2003, vol. 46, no. 7, pp. 64–66.

    Google Scholar 

  11. Chakraborty, J. and Ramkrishna, D., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 9763–9771. https://doi.org/10.1021/ie900456j

    Article  CAS  Google Scholar 

  12. Berthiaux, H., Mizonov, V., and Zhukov, V., Powder Technol., 2005, vol. 157, pp. 128–137. https://doi.org/10.1016/j.powtec.2005.05.019

    Article  CAS  Google Scholar 

  13. Berthiaux, H., Powder Technol., 2014, vol. 253, pp. 385–392. https://doi.org/10.1016/S0009-2509(00)00086-5

    Article  Google Scholar 

  14. Flisyuk, O.M., Martsulevich, N.A., and Shininov, T.N., Russ. J. Appl. Chem., 2016, vol. 89, no. 4, pp. 603–608. https://doi.org/10.1134/S1070427216040133

    Article  CAS  Google Scholar 

  15. Pen'kov, N.V., Flisyuk, O.M., and Bykov, V.A., Zh. Prikl. Khim, 1985, vol. 58, no. 5, pp. 1158–1160.

    CAS  Google Scholar 

  16. Gorlov, A.O., Vestn. BGTU im, vol. G. Shukhova, 2015, no. 5, pp. 179–183.

  17. Gorlov, A.S., Porkhalo, V.A., and Gorlov, K.A., Vestn. BGTU im, vol. G. Shukhova, 2017, no. 9, pp. 183–187. https://doi.org/10.12737/article_59a93b0f7260b4.49300932

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Flisyuk.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flisyuk, O.M., Martsulevich, N.A. Attrition of Particles in Fluidized Bed Apparatuses. Russ J Appl Chem 93, 1538–1543 (2020). https://doi.org/10.1134/S1070427220100080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220100080

Keywords:

Navigation