Skip to main content
Log in

Carbon Dioxide Reforming of Methane

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic and kinetic aspects of the carbon dioxide reforming of methane are considered. Data on the types of catalytic systems used and on specific features of the commercial implementation of the process are systematized. The optimum temperature and pressure ranges for the carbon dioxide reforming of methane are 700–900°C and 2–4 MPa, respectively. Detailed analysis of the published data on the activity and stability of dry reforming catalysts shows that the key factor influencing the activity of the catalysts and their resistance to coking is the balance between the properties of the support and composition of the active metal phase. For example, the acid–base properties of the support determine the strength of binding of the metal with the surface, which can influence both the catalyst activity and its stability by preventing sintering of the active component particles. The most widely supports are silicon and aluminum oxides and zirconium and titanium silicates. Their acidity is controlled by introducing doping additives such as cerium, calcium, and magnesium oxides. Both base transition (Ni and Co) and noble (Rh, Ru, Pd, Pt, and Ir) metals as well as bimetallic systems containing sites of both types can serve as an active phase. The main problem restricting the practical use and scaling of the carbon dioxide reforming of methane is catalyst deactivation due to support coking and sintering of the active component particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1. 2015.

  2. Publication permission from Elsevier of May 18, 2020.

  3. Publication permission from Royal Society of Chemistry of May 19, 2020.

  4. Publication permission from Springer Letters of May 19, 2020.

  5. Publication permission from Elsevier of May 19, 2020.

  6. Publication permission from Elsevier of May 19, 2020.

  7. Publication permission from Elsevier of May 19, 2020.

  8. Publication permission from American Chemical Society of May 19, 2020.

  9. Publication permission from John Wiley and Sons of May 19, 2020.

  10. https://www.topsoe.com/ru/products/equipment/syncortm-reaktor-avtotermicheskogo-riforminga

REFERENCES

  1. Sokolov, S., Kondratenko, E.V., Pohl, M.M., Barkschat, A., and Rodemerck, U., Appl. Catal. B: Environmental, 2012, vols. 113–114, pp. 19–30. https://doi.org/10.1016/j.apcatb.2011.09.035

    Article  CAS  Google Scholar 

  2. Maestri, M., Vlachos, D.G., Beretta, A., Groppi, G., and Tronconi, E., AIChE J., 2009, vol. 55, no. 4, pp. 993–1008. https://doi.org/10.1002/aic.11767

    Article  CAS  Google Scholar 

  3. Naidja, A., Krishna, C.R., Butcher, T., and Mahajan, D., Prog. Energy Combust. Sci., 2003, vol. 29, pp. 155–191. https://doi.org/10.1016/S0360-1285(03)00018-2

    Article  CAS  Google Scholar 

  4. Olah, G.A., Goeppert, A., Czaun, M., Mathew, T., May, R.B., and Prakash, G.K.S., J. Am. Chem. Soc., 2015, vol. 137, pp. 8720–8729. https://doi.org/10.1021/jacs.5b02029

    Article  CAS  PubMed  Google Scholar 

  5. Yu, M., Zhu, K., Liu, Z., Xiao, H., Deng, W., and Zhou, X., Appl. Catal. B: Environmental, 2014, vol. 148, pp. 177–190. https://doi.org/10.1016/j.apcatb.2013.10.046

    Article  CAS  Google Scholar 

  6. Yu, M., Zhu, Y.A., Lu, Y., Tong, G., Zhu, K., and Zhou, X., Appl. Catal. B: Environmental, 2015, vol. 165, pp. 43–56. https://doi.org/10.1016/j.apcatb.2014.09.066

    Article  CAS  Google Scholar 

  7. Gould, T.D., Izar, A., Weimer, A.W., Falconer, J.L., and Medlin, J.W., ACS Catal., 2014, vol. 4, pp. 2714–2717. https://doi.org/10.1021/cs500809w

    Article  CAS  Google Scholar 

  8. Sternberg, A., Jens, C.M., and Bardow, A., Green Chem., 2017, vol. 19, pp. 2244–2259. https://doi.org/10.1039/c6gc02852g

    Article  CAS  Google Scholar 

  9. Ewbank, J.L., Kovarik, L., Kenvin, C.C., and Sievers, C., Green Chem., 2014, vol. 16, pp. 885–896. https://doi.org/10.1039/c3gc41782d

    Article  CAS  Google Scholar 

  10. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N., Renew. Sustain. Energy Rev., 2018, vol. 82, pp. 2570–2585. https://doi.org/10.1016/j.rser.2017.09.076

    Article  CAS  Google Scholar 

  11. Arora, S. and Prasad, R., RSC Adv., 2016, vol. 6, pp. 108668–108688. https://doi.org/10.1039/C6RA20450

  12. Nagaoka, K., Catal. Commun., 2001, vol. 2, pp. 255–260. https://doi.org/10.1016/S1566-7367(01)00043-7

    Article  CAS  Google Scholar 

  13. Brungs, A.J., York, A.P.E., Claridge, J.B., Márquez-Alvarez, C., and Green, M.L.H., Catal. Lett., 2000, vol. 70, nos. 3–4, pp. 117–122. https://doi.org/10.1023/A:1018829116093

    Article  CAS  Google Scholar 

  14. Wang, S., Lu, G.Q., and Millar, G.J., Energy Fuels, 1996, vol. 10, pp. 896–904. https://doi.org/10.1021/ef950227t

    Article  CAS  Google Scholar 

  15. Araujo, G.C., de Lima, S.M., de Assaf, J.M., Peña, M.A., Fierro, J.L.G., and do Carmo Rangel, M., Catal. Today, 2008, vol. 133, pp. 129–135. https://doi.org/10.1016/j.cattod.2007.12.049

    Article  CAS  Google Scholar 

  16. Kehres, J., Jakobsen, J.G., Andreasen, J.W., Wagner, J.B., Liu, H., Molenbroek, A., and Vegge, T., J. Phys. Chem. C, 2012, vol. 116, no. 40, pp. 21407–21415. https://doi.org/10.1021/jp3069656

    Article  CAS  Google Scholar 

  17. Jang, W.J., Jeong, D.W., Shim, J.O., Kim, H.M., Roh, H.S., Son, I.H., and Lee, S.J., Appl. Eng., 2016, vol. 173, pp. 80–91. https://doi.org/10.1016/j.apenergy.2016.04.006

    Article  CAS  Google Scholar 

  18. Nikoo, M.K. and Amin, N.A.S., Fuel Process. Technol., 2011, vol. 92, no. 3, pp. 678–691. https://doi.org/10.1016/j.fuproc.2010.11.027

    Article  CAS  Google Scholar 

  19. Li, Y., Wang, Y., Zhang, X., and Mi, Z., Int. J. Hydrogen Energy, 2008, vol. 33, no. 10, pp. 2507–2514. https://doi.org/10.1016/j.ijhydene.2008.02.051

    Article  CAS  Google Scholar 

  20. Jang, W.J., Shim, J.O., Kim, H.M., Yoo, S.Y., and Roh, H.S., Catal. Today, 2019, vol. 324, pp. 15–26. https://doi.org/10.1016/j.cattod.2018.07.032

    Article  CAS  Google Scholar 

  21. Krylov, O.V., Ross. Khim. Zh., 2000, vol. 46, no. 1, pp. 19–33.

    Google Scholar 

  22. Aboonasr Shiraz, M.H., Rezaei, M., and Meshkani, F., Res. Chem. Intermed., 2016, vol. 42, no. 8, pp. 6627–6642. https://doi.org/10.1007/s11164-016-2485-z

    Article  CAS  Google Scholar 

  23. Pakhare, D. and Spivey, J., Chem. Soc. Rev., 2014, vol. 43, no. 22, pp. 7813–7837. https://doi.org/10.1039/c3cs60395d

    Article  CAS  PubMed  Google Scholar 

  24. Tomishige, K., Nurunnabi, M., Maruyama, K., and Kunimori, K., Appl. Catal. A, 2004, vol. 85, p. 1103. https://doi.org/10.1016/j.fuproc.2003.10.014

    Article  CAS  Google Scholar 

  25. Izquierdo, U., Barrio, V.L., Requies, J., Cambra, J.F., Güemez, M.B., and Arias, P.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 18, pp. 7623–7631. https://doi.org/10.1016/j.ijhydene.2012.09.107

    Article  CAS  Google Scholar 

  26. Faroldi, B., Bosko, M.L., Múnera, J., Lombardo, E., and Cornaglia, L., Catal. Today, 2013, vol. 213, pp. 135–144. https://doi.org/10.1016/j.cattod.2013.02.024

    Article  CAS  Google Scholar 

  27. Pakhare, D., Shaw, C., Haynes, D., Shekhawat, D., and Spivey, J., J. CO2 Util., 2013, vol. 1, pp. 37–42. https://doi.org/10.1016/j.jcou.2013.04.001

    Article  CAS  Google Scholar 

  28. Bitter, J.H., Seshan, K., and Lercher, J.A., Top. Catal., 2000, vol. 10, pp. 295–305. https://doi.org/10.1023/A:1019149025242

    Article  CAS  Google Scholar 

  29. Wei, J., J. Catal., 2004, vol. 225, no. 1, pp. 116–127. https://doi.org/10.1016/j.jcat.2003.09.030

    Article  CAS  Google Scholar 

  30. Hou, Z., Chen, P., Fang, H., Zheng, X., and Yashima, T., Int. J. Hydrogen Energy, 2006, vol. 31, pp. 555–561. https://doi.org/10.1016/j.ijhydene.2005.06.010

    Article  CAS  Google Scholar 

  31. Yamaguchi, A. and Iglesia, E., J. Catal., 2010, vol. 274, no. 1, pp. 52–63. https://doi.org/10.1016/j.jcat.2010.06.001

    Article  CAS  Google Scholar 

  32. Munera, J., Irusta, S., Cornaglia, L., Lombardo, E., Vargascesar, D., and Schmal, M., J. Catal., 2007, vol. 245, pp. 25–34. https://doi.org/10.1016/j.jcat.2006.09.008

    Article  CAS  Google Scholar 

  33. Wang, H.Y. and Ruckenstein, E., J. Phys. Chem. B, 1999, vol. 103, no. 51, pp. 11327–11331. https://doi.org/10.1021/jp992348q

    Article  CAS  Google Scholar 

  34. Buyevskaya, O.V., Wolf, D., and Baerns, M., Catal. Lett., 1994, vol. 29, nos. 1–2, pp. 249–260. https://doi.org/10.1007/BF00814271

    Article  CAS  Google Scholar 

  35. Nielsen, B., Luntz, A.C., Holmblad, P.M., and Chorkendorff, I., Catal. Lett., 1995, vol. 32, nos. 1–2, pp. 15–30. https://doi.org/10.1007/BF00806098

    Article  CAS  Google Scholar 

  36. Zhang, Z. and Verykios, X.E., Catal. Lett., 1996, vol. 38, nos. 3–4, pp. 175–179. https://doi.org/10.1007/BF00806565

    Article  CAS  Google Scholar 

  37. Lisi, L., Bagnasco, G., Ciambelli, P., De Rossi, S., Porta, P., Russo, G., and Turco, M., J. Solid State Chem., 1999, vol. 146, no. 1, pp. 176–183. https://doi.org/10.1006/jssc.1999.8327

    Article  CAS  Google Scholar 

  38. Ferreira-Aparicio, P., Fernandez-Garcia, M., Guerrero-Ruiz, A., and Rodriguez-Ramos, I., J. Catal., 2000, vol. 190, no. 2, pp. 296–308. https://doi.org/10.1006/jcat.1999.2752

    Article  CAS  Google Scholar 

  39. Ruckenstein, E. and Hu, Y.H., Catal. Lett., 1998, vol. 51, pp. 183–185. https://doi.org/10.1023/A:1019030311127

    Article  CAS  Google Scholar 

  40. Bradford, M.C. and Albert Vannice, M., Catal. Today, 1999, vol. 50, no. 1, pp. 87–96. https://doi.org/10.1016/S0920-5861(98)00465-9

    Article  CAS  Google Scholar 

  41. Lucrédio, A.F., Assaf, J.M., and Assaf, E.M., Appl. Catal. A: General, 2011, vol. 400, nos. 1–2, pp. 156–165. https://doi.org/10.1016/j.apcata.2011.04.035

    Article  CAS  Google Scholar 

  42. Erdohelyi, A., J. Catal., 1993, vol. 141, no. 1, pp. 287–299. https://doi.org/10.1006/jcat.1993.1136

    Article  CAS  Google Scholar 

  43. Qian, L., Ren, Y., Yu, H., Wang, Y., Yue, B., and He, H., Appl. Catal. A: General, 2011, vol. 401, nos. 1–2, pp. 114–118. https://doi.org/10.1016/j.apcata.2011.05.004

    Article  CAS  Google Scholar 

  44. Guo, J., Lou, H., Mo, L., and Zheng, X., J. Mol. Catal. A: Chemical, 2010, vol. 316, nos. 1–2, pp. 1–7. https://doi.org/10.1016/j.molcata.2009.09.023

    Article  CAS  Google Scholar 

  45. Van Keulen, A.N.J., Seshan, K., Hoebink, J.H.B.J., and Ross, J.R.H., J. Catal., 1997, vol. 166, no. 2, pp. 306–314. https://doi.org/10.1006/jcat.1997.1539

    Article  CAS  Google Scholar 

  46. Tsipouriari, V.A. and Verykios, X.E., Catal. Today, 2001, vol. 64, nos. 1–2, pp. 83–90. https://doi.org/10.1016/S0920-5861(00)00511-3

    Article  CAS  Google Scholar 

  47. Wang, H. and Ruckenstein, E., Appl. Catal. A: General, 2000, vol. 204, no. 1, pp. 143–152. https://doi.org/10.1016/S0926-860X(00)00547-0

    Article  CAS  Google Scholar 

  48. Ferreira-Aparicio, P., Rodrı́guez-Ramos, I., Anderson, J., and Guerrero-Ruiz, A., Appl. Catal., 2000, vol. 202, pp. 183–196. https://doi.org/10.1016/S0926-860X(00)00525-1

    Article  CAS  Google Scholar 

  49. Stagg-Williams, S.M., Noronha, F.B., Fendley, G., and Resasco, D., J. Catal., 2000, vol. 194, no. 2, pp. 240–249. https://doi.org/10.1006/jcat.2000.2939

    Article  CAS  Google Scholar 

  50. Maestri, M., Vlachos, D., Beretta, A., Groppi, G., and Tronconi, E., J. Catal., 2008, vol. 259, pp. 211–222. https://doi.org/10.1016/j.jcat.2008.08.008

    Article  CAS  Google Scholar 

  51. Barbier, J., Appl. Catal., 1986, vol. 23, no. 2, pp. 225–243. https://doi.org/10.1016/S0166-9834(00)81294-4

    Article  CAS  Google Scholar 

  52. Pant, B. and Stagg-Williams, S.M., Catal. Commun., 2004, vol. 5, pp. 305–309. https://doi.org/10.1016/j.catcom.2004.03.009

    Article  CAS  Google Scholar 

  53. Cui, Y., Zhang, H., Xu, H., and Li, W., Appl. Catal., 2007, vol. 318, pp. 79–88. https://doi.org/10.1016/j.apcata.2006.10.044

    Article  CAS  Google Scholar 

  54. Topalidis, A., Petrakis, D.E., Ladavos, A., and Loukatzikou, L., Catal. Today, 2007, vol. 127, nos. 1–4, pp. 238–245. https://doi.org/10.1016/j.cattod.2007.04.015

    Article  CAS  Google Scholar 

  55. Erdöhelyi, A., Cserényi, J., Papp, E., and Solymosi, F., Appl. Catal. A: General, 1994, vol. 108, no. 2, pp. 205–219. https://doi.org/10.1016/0926-860X(94)85071-2

    Article  Google Scholar 

  56. Richardson, J.T. and Paripatyadar, S.A., Appl. Catal., 1990, vol. 61, no. 1, pp. 293–309. https://doi.org/10.1016/S0166-9834(00)82152-1

    Article  CAS  Google Scholar 

  57. Özkara-Aydınoğlu, S. and Aksoylu, A.E., Int. J. Hydrogen Energy, 2011, vol. 36, no. 4, pp. 2950–2959. https://doi.org/10.1016/j.ijhydene.2010.11.080

    Article  CAS  Google Scholar 

  58. Özkara-Aydınoğlu, S. and Erhan Aksoylu, A., Chem. Eng. J., 2013, vols. 215–216, pp. 542–549. https://doi.org/10.1016/j.cej.2012.11.034

    Article  CAS  Google Scholar 

  59. Quiroga, M.M. and Castro Luna, A.E., Ind. Eng. Chem. Res., 2007, vol. 46, pp. 5265–5270. https://doi.org/10.1021/ie061645w

    Article  CAS  Google Scholar 

  60. Luo, J.Z., Yu, Z.L., Ng, C.F., and Au, C.T., J. Catal., 2000, vol. 194, no. 2, pp. 198–210. https://doi.org/10.1006/jcat.2000.2941

    Article  CAS  Google Scholar 

  61. Mark, M.F., Maier, W.F., and Mark, F., Chem. Eng. Technol., 1997, vol. 20, no. 6, pp. 361–370. https://doi.org/10.1002/ceat.270200602

    Article  CAS  Google Scholar 

  62. Guo, J., Lou, H., Zhao, H., Chai, D., and Zheng, X., Appl. Catal. A, 2004, vol. 273, pp. 75–82. https://doi.org/10.1016/j.apcata.2004.06.014

    Article  CAS  Google Scholar 

  63. Souza, M.M.V., Aranda, D.A., and Schmal, M., J. Catal., 2001, vol. 204, no. 2, pp. 498–511. https://doi.org/10.1006/jcat.2001.3398

    Article  CAS  Google Scholar 

  64. Foo, S.Y., Cheng, C.K., Nguyen, T.H., and Adesina, A.A., Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 10450–10458. https://doi.org/10.1021/ie100460g

    Article  CAS  Google Scholar 

  65. Kohn, M.P., Castaldi, M.J., and Farrauto, R.J., Appl. Catal. B: Environmental, 2010, vol. 94, nos. 1–2, pp. 125–133. https://doi.org/10.1016/j.apcatb.2009.10.029

    Article  CAS  Google Scholar 

  66. Chettapongsaphan, C., Charojrochkul, S., Assabumrungrat, S., and Laosiripojana, N., Appl. Catal. A, 2010, vol. 386, pp. 194–200. https://doi.org/10.1016/j.apcata.2010.07.053

    Article  CAS  Google Scholar 

  67. Koubaissy, B., Pietraszek, A., Roger, A.C., and Kiennemann, A., Catal. Today, 2010, vol. 157, nos. 1–4, pp. 436–439. https://doi.org/10.1016/j.cattod.2010.01.050

    Article  CAS  Google Scholar 

  68. García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A., and Alemany, L.J., J. Catal., 2010, vol. 270, pp. 136–145. https://doi.org/10.1016/j.jcat.2009.12.010

    Article  CAS  Google Scholar 

  69. Garcia-Dieguez, M., Pieta, I.S., Herrera, M.S., Larrubia, M.A., and Alemany, L.J., Catal. Today, 2011, vol. 172, pp. 136–142. https://doi.org/10.1016/j.cattod.2011.02.012

    Article  CAS  Google Scholar 

  70. Wu, J.C.S. and Chou, H.C., Chem. Eng. J., 2009, vol. 148, nos. 2–3, pp. 539–545. https://doi.org/10.1016/j.cej.2009.01.011

    Article  CAS  Google Scholar 

  71. Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., and Mondragón, F., Appl. Catal. A: General, 2008, vol. 334, nos. 1–2, pp. 251–258. https://doi.org/10.1016/j.apcata.2007.10.010

    Article  CAS  Google Scholar 

  72. Tao, K., Zhang, Y., Terao, S., and Tsubaki, N., Catal. Today, 2010, vol. 153, pp. 150–155. https://doi.org/10.1016/j.cattod.2010.02.061

    Article  CAS  Google Scholar 

  73. Bhavani, A.G., Kim, W.Y., Kim, J.Y., and Lee, J.S., Appl. Catal. A: General, 2013, vol. 450, pp. 3–72. https://doi.org/10.1016/j.apcata.2012.10.008

    Article  CAS  Google Scholar 

  74. Ghelamallah, M. and Granger, P., Fuel, 2012, vol. 97, pp. 269–276. https://doi.org/10.1016/j.fuel.2012.02.068

    Article  CAS  Google Scholar 

  75. Haynes, D.J., Campos, A., Berry, D.A., Shekhawat, D., Roy, A., and Spivey, J.J., Catal. Today, 2010, vol. 155, pp. 84–91. https://doi.org/10.1016/j.cattod.2009.03.025

    Article  CAS  Google Scholar 

  76. Stagg-Williams, S.M., Soares, R., Romero, E., and Alvarez, W.E., Stud. Surf. Sci. Catal., 2000, vol. 130, pp. 3663–3668. https://doi.org/10.1016/S0167-2991(00)80592-3

    Article  Google Scholar 

  77. Kharton, V. and Marques, F.M., Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 3, pp. 261–269. https://doi.org/10.1016/S1359-0286(02)00033-5

    Article  CAS  Google Scholar 

  78. Soria, M.A., Mateos-Pedrero, C., Guerrero-Ruiz, A., and Rodríguez-Ramos, I., Int. J. Hydrogen Energy, 2011, vol. 36, no. 23, pp. 15212–15220. https://doi.org/10.1016/j.ijhydene.2011.08.117

    Article  CAS  Google Scholar 

  79. McGuire, N.E., Sullivan, N.P., Deutschmann, O., Zhu, H., and Kee, R.J., Appl. Catal. A: General, 2011, vol. 394, nos. 1–2, pp. 257–265. https://doi.org/10.1016/j.apcata.2011.01.009

    Article  CAS  Google Scholar 

  80. Yang, Z., Chem. Commun., 2014, vol. 50, pp. 13910–13913. https://doi.org/10.1039/C4CC06423B

    Article  CAS  Google Scholar 

  81. Foo, S., Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 10450–10458. https://doi.org/10.1021/ie100460g

    Article  CAS  Google Scholar 

  82. Yamazaki, O., Chem. Lett., 1992, vol. 21, no. 10, pp. 1953–1954. https://doi.org/10.1246/cl.1992.1953

    Article  Google Scholar 

  83. Wang, N., Int. J. Hydrogen Energy, 2012, vol. 37, pp. 19–30. https://doi.org/10.1016/j.ijhydene.2011.03.138

    Article  CAS  Google Scholar 

  84. Yamazaki, O., Appl. Catal. A: General, 1996, vol. 136, pp. 49−56. https://doi.org/10.1016/0926-860X(95)00268-5

    Article  CAS  Google Scholar 

  85. Chen, Y., Appl. Catal. A: General, 1997, vol. 165, nos. 1–2, pp. 335–347. https://doi.org/10.1016/S0926-860X(97)00216-0

    Article  CAS  Google Scholar 

  86. Ruckenstein, R.E., Ind. Eng. Chem. Res., 1998, vol. 37, no. 5, pp. 1744–1747. https://doi.org/10.1021/ie9707883

    Article  CAS  Google Scholar 

  87. Wang, S. and Lu, C.Q., Appl. Catal., 1998, vol. B19, no. 34, pp. 267–277. https://doi.org/10.1016/S0926-3373(98)00081-2

    Article  Google Scholar 

  88. Chen, P., Zhang, H.B., Lin, G.D., and Tsai, K.R., Appl. Catal., 1998, vol. A166, no. 12, pp. 343–350. https://doi.org/10.1016/S0926-860X(97)00291-3

    Article  Google Scholar 

  89. Erdöhelyi, A., Stud. Surf. Sci. Catal., 1997, vol. 107, pp. 525–530. https://doi.org/10.1016/S0167-2991(97)80385-0

    Article  Google Scholar 

  90. O’Connor, A.M. and Ross, J.R.H., Abstracts of Papers, 5th European Workshop on Methane Activation, Linerik (Ireland), 1997, vol. 1, pp. 46–47.

  91. Stagg, S., J. Catal., 1998, vol. 178, no. 1, pp. 137–145. https://doi.org/10.1006/jcat.1998.2146

    Article  CAS  Google Scholar 

  92. Wang, S., Appl. Catal. A: General, 1995, vol. 133, no. 1, pp. 149–161. https://doi.org/10.1021/ef950227t

    Article  Google Scholar 

  93. Dalai, A.K., Appl. Catal. A: General, 2008, vol. 339, pp. 121–129. https://doi.org/10.1016/j.apcata.2008.01.027

    Article  CAS  Google Scholar 

  94. Carrara, C., Top. Catal., 2008, vol. 51, nos. 1–4, pp. 98–106. https://doi.org/10.1021/ie061621p

    Article  CAS  Google Scholar 

  95. Dias, J., Catal. Today, 2003, vol. 85, pp. 59–68. https://doi.org/10.1016/S0920-5861(03)00194-9

    Article  CAS  Google Scholar 

  96. Sengupta, S., J. CO2 Util., 2015, vol. 10, pp. 67–77. https://doi.org/10.1016/j.jcou.2015.04.003

    Article  CAS  Google Scholar 

  97. Li, H., Chem. Eng. Sci., 2004, vol. 59, pp. 4861–4867. https://doi.org/10.1016/j.ces.2004.07.076

    Article  CAS  Google Scholar 

  98. Nakagawa, Y., Chin. J. Catal., 2012, vol. 33, no. 4–6, pp. 583–594. https://doi.org/10.1016/S1872-2067(11)60359-8

    Article  CAS  Google Scholar 

  99. Moradi, G., J. Nat. Gas. Sci. Eng., 2016, vol. 33, pp. 657–665. https://doi.org/10.1016/j.jngse.2016.06.004

    Article  CAS  Google Scholar 

  100. Xu, L., ACS Catal., 2012, vol. 2, no. 7, pp. 1331–1342. https://doi.org/10.1021/cs3001072

    Article  CAS  Google Scholar 

  101. Zhao, Z., RSC Adv., 2016, vol. 6, no. 55, pp. 49487–49496. https://doi.org/10.1039/C6RA09203A

    Article  CAS  Google Scholar 

  102. Fan, M., Abdullah, A.Z., and Bhatia, S., ChemCatChem, 2009, vol. 1, pp. 192–208. https://doi.org/10.1002/cctc.200900025

    Article  CAS  Google Scholar 

  103. Lapidus, A.L., Golubeva, I.A., and Zhagfarov, F.G., Gazokhimiya (Gas Chemistry), Moscow: Ross. Gos. Univ. Nefti i Gaza im. I.M. Gubkina, 2013.

    Google Scholar 

  104. Van der Osterkamp, P. and Wagner, E., Ross. Khim. Zh., 2000, vol. 44, pp. 34–35.

    Google Scholar 

  105. Teuner, S.C., Neumann, P., and Von Linde, F., Oil Gas Eur. Mag., 2001, vol. 27, no. 3, pp. 44–46.

    Google Scholar 

  106. Rostrup-Nielsen, J., Catal. Today, 2006, vol. 111, pp. 4–11. https://doi.org/10.1016/j.cattod.2005.10.002

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation; unique project identifier RFMEFI60719X0296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Glotov.

Ethics declarations

A.L. Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry; the other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedolivko, V.V., Zasypalov, G.O., Vutolkina, A.V. et al. Carbon Dioxide Reforming of Methane. Russ J Appl Chem 93, 765–787 (2020). https://doi.org/10.1134/S1070427220060014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220060014

Keywords:

Navigation