Skip to main content
Log in

Catalytic Hydrogenolysis of Solketal on Bifunctional Catalysts with Production of High Octane Components of Motor Fuels

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of implementing the concept of converting bioglycerin into a blend of oxygenates, potentially applicable as components of gasoline by ketalization with acetone (T = 30–40°C, atmospheric pressure), accompanied by mild hydrogenolysis of ketal [T = 100–140°C, p(H2) = 2 MPa] to obtain a mixture of of glycerol and solketal isopropyl ethers. It was shown that the preferred method of conversion is the separate performing of ketalization and hydrogenolysis, since when these stages are combined, the side reaction of the formation of free isopropyl alcohol is highly selective. The regularities in the influence of the composition of the catalytic system (Pd/C + para-toluenesulfonic acid) on its activity were found in the reaction of catalytic hydrogenation of solketal to a mixture of glycerol and solketal isopropyl ethers (optimal ratio of Pd/para-toluenesulfonic acid = 0.811 mol). It was shown that the addition of 4–5% glycerol to raw materials makes it possible to increase the yield of target hydrogenation products from 25 to 36%. Using a flow unit, the catalytic hydrogenation of solketal was optimized. In the optimal mode [T = 170°C, p(H2) = 4 MPa, v = 0.5 h−1, H2/feedstock = 660 nL L−1], the conversion of solketal to a mixture of target products (glycerol monoisopropyl ether, glycerol diisopropyl ethers, and solketal isopropyl ether) reaches 98%. The possibility of carrying out the reaction on heterogeneous bifunctional catalysts of the Pd/sulfonated coal type is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melero, J.A., Vicente, G., Paniagua, M., Morales, G., and Munoz, P., Bioresour. Technol., 2012, vol. 103, pp. 142–151. https://doi.org/10.1016/j.biortech.2011.09.105

    Article  CAS  Google Scholar 

  2. Melero, J.A., Vicente, G., Morales, G., and Paniagua, M., Bustamante J. Fuel, 2010, vol. 89, pp. 2011–2018. https://doi.org/10.1016/j.fuel.2010.03.042

    Article  CAS  Google Scholar 

  3. Pariente, S., Tanchoux, N., and Fajula, F., Green Chem., 2009, vol. 11, pp. 1256–1261. https://doi.org/10.1039/b905405g

    Article  CAS  Google Scholar 

  4. Nandiwale, K.Y., Patil, S.E., and Bokade, V.V., Energy Technol., 2014, vol. 2, pp. 446–452. https://doi.org/10.1002/ente.201300169

    Article  CAS  Google Scholar 

  5. Samoilov, V.O., Ramazanov, D.N., Nekhaev, A.I., and Maksimov, A.L., Petrol. Chem., 2016, vol. 56, pp. 125–130. https://doi.org/10.1134/S0965544116010060.

    Article  CAS  Google Scholar 

  6. Chang, J.S., Lee, Y.D., Chou, L.C.S., Ling, T.R., and Chou, T.C., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 655–661. https://doi.org/10.1021/ie201612t

    Article  Google Scholar 

  7. Saengarun, C., Petsom, A., and Tungasmita, D.N., Sci. World, J., 2017, pp. 1–11. https://doi.org/10.1155/2017/4089036

    Article  Google Scholar 

  8. Ikizer, B., Oktar, N., and Dogu, T., Fuel Process. Technol., 2015, vol. 138, pp. 570–577. https://doi.org/10.1016/j.fuproc.2015.06.039

    Article  CAS  Google Scholar 

  9. Mota, C., J.A., Da Silva, C., X.A., Rosenbach, N., Costa, J., and Da Silva, F., Energy and Fuels, 2010, vol. 24, pp. 2733–2736. https://doi.org/10.1021/ef9015735

    Article  CAS  Google Scholar 

  10. Ilgen, O., Yerlikaya, S., and Akyurek, F.O., Period Polytech. Chem. Eng., 2016, vol. 61, pp. 144–148. https://doi.org/10.3311/PPch.8895

    Google Scholar 

  11. Pat. EP0718270A2 (publ. 1995). Verfahren zur Herstellung von Polyalkylethern.

  12. Dmitriev, G.S., Zanaveskin, L.N., Terekhov, A.V., Samoilov, V.O., Kozlovskii, I.A., and Maksimov, A.L., Russ. J. Appl. Chem., 2018, vol. 91, pp. 1478–1485. https://doi.org/10.1134/S1070427218090100

    Article  CAS  Google Scholar 

  13. Terekhov, A.V., Dmitriev, G.S., Khadzhiev, S.N., and Zanaveskin, L.N., Russ. J. Appl. Chem., 2016, vol. 89, pp. 639–643. https://doi.org/10.1134/S1070427216040182

    Article  CAS  Google Scholar 

  14. Novikov, D.A., Dobryakov, Y.G., and Smirnova, N.A., Russ. J. Appl. Chem., 2013, vol. 86, pp. 398–403. https://doi.org/10.1134/S107042721303018X

    Article  CAS  Google Scholar 

  15. Samoilov, V., Onishchenko, M., Ramazanov, D., and Maximov, A., ChemCatChem., 2017, vol. 9, pp. 2839–2849. https://doi.org/10.1002/cctc.201700108

    Article  CAS  Google Scholar 

  16. Shi, Y., Dayoub, W., Favre-Réguillon, A., Chen, G.R., and Lemaire, M., Tetrahedron. Lett., 2009, vol. 50, pp. 6891–6893. https://doi.org/10.1016/j.tetlet.2009.09.134

    Article  CAS  Google Scholar 

  17. Samoilov, V.O., Ni, D.S., and Maximov, A.L., ChemistrySelect., 2018, vol. 3, pp. 9759–9766. https://doi.org/10.1002/slct.201802135

    Article  CAS  Google Scholar 

  18. Bethmont, V., Montassier, C., and Marecot, P., J. Mol. Catal. A: Chemical, 2000, vol. 152, pp. 133–140. https://doi.org/10.1016/S1381-1169(99)00272-1

    Article  CAS  Google Scholar 

  19. Lorette, N.B., Howard, W.L., and Brown, J.H., J. Org. Chem., 1959, vol. 24, pp. 1731–1733. https://doi.org/10.1021/jo01093a028

    Article  CAS  Google Scholar 

  20. Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.A., and Xu, C.C., Fuel, 2014, vol. 117, pp. 470–477. https://doi.org/10.1016/j.fuel.2013.09.066

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out with financial support from the Russian Foundation for Basic Research in the framework of the scientific project no. 18-33-00533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Ramazanov.

Ethics declarations

A. L. Maksimov is the chief editor of the Journal of Applied Chemistry. The remaining authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Prikladnoi Khimii, 2020, Vol. 93, No. 1, pp. 121–131.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.O., Ni, D.S., Goncharova, A.V. et al. Catalytic Hydrogenolysis of Solketal on Bifunctional Catalysts with Production of High Octane Components of Motor Fuels. Russ J Appl Chem 93, 108–117 (2020). https://doi.org/10.1134/S1070427220010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220010127

Keywords

Navigation