Skip to main content
Log in

Thermochemical and Electrochemical Stability of Electrolyte Systems based on Sulfolane

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

UV spectroscopy and cyclic voltammetry were used to examine the thermochemical and electrochemical stabilities of liquid sulfolane-based electrolyte systems for lithium and lithium-ion batteries. It was found that solutions of lithium salts in sulfolane are stable in prolonged keeping at 100°C. The thermochemical stability of lithium salt solutions in sulfolane changes in the order LiBF4 > LiClO4 ≈ LiN(CF3SO2)2 > LiCF3SO3. It was shown that the electrochemical stability of lithium salt solutions in sulfolane is in the range from 5.5 to 5.9 V (relative to Li/Li+) and prolonged action of high temperatures (100°C) does not yield electrochemically active thermal destruction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, K.E., Hackney, S.A., and Kumar, R.V., High Energy Density Lithium Batteries, Weinheim: Wiley-VCH, 2010.

    Book  Google Scholar 

  2. Xu, K., Chem. Rev., 2004, vol. 104, no. 10, pp. 4303–4417.

    Article  CAS  PubMed  Google Scholar 

  3. Xu, K., Chem. Rev., 2014, vol. 114, pp. 11503–11618.

    Article  CAS  PubMed  Google Scholar 

  4. Jow, T.R., Xu, K., Borodin, O., Ue, M., Electrolytes for Lithium and Lithium–Ion Batteries, New York: Springer, 2014.

    Book  Google Scholar 

  5. Semenova, I.V., Florianovich, G.M., and Khoroshilov, A.V., Korroziya i zashchita ot korrozii (Corrosion and Corrosion Protection), Moscow: Fizmatlit, 2002.

    Google Scholar 

  6. Kozen, A.C., Lin, C.-F., Pearse, A.J., Schroeder, M.A., Han, X., Hu, L., Lee, S.-B., Rubloff, G.W., and Noked, M., ACS Nano, 2015, vol. 9, no. 6, pp. 5884–5892.

    Article  CAS  PubMed  Google Scholar 

  7. Botte, G.G. and Bauer, T.J., J. Power Sources, 2003, vols. 119–121, pp. 815–820.

    Article  CAS  Google Scholar 

  8. Ravdel, B., Abraham, K.M., Gitzendanner, R., DiCarlo, J., Lucht, B., and Campion, C., J. Power Sources, 2003, vols. 119–121, pp. 805–810.

    Google Scholar 

  9. Kedrinskii, I.A. and Yakovlev, V.G., Li–ionnye akkumulyatory (Li-Ion Batteries), Krasnoyarsk: IPK Platina, 2002.

    Google Scholar 

  10. Kolosnitsyn, V.S., Karaseva, E.V., Shakirova, N.V., Kuz’mina, E.V., Ivanov, A.L., and Amine va, N.A., Bashkir. Khim. Zh., 2007, vol. 14, no. 1, pp. 65–70.

    CAS  Google Scholar 

  11. Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G., Energy Environ. Sci., 2014, vol. 7, pp. 513–537.

    Article  CAS  Google Scholar 

  12. Younesi, R., Veith, G.M, Johansson, P., Edstro, K., and Veggea, T., Energy Environ. Sci., 2015, vol. 8, pp. 1905–1922.

    Article  CAS  Google Scholar 

  13. Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., Uhlig, F., and Koller, S., J. Power Sources, 2014, vol. 267, pp. 255–259.

    Article  CAS  Google Scholar 

  14. Shao, N., Sun, X.G., Dai, S., and Jiang, D., Phys. Chem. B, 2011, vol. 115, pp. 12120–12125.

    Article  CAS  Google Scholar 

  15. Wu, F., Zhou, H., Bai, Y., Wang, H., and Wu, C., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 27, pp. 15098–15107.

    Article  CAS  PubMed  Google Scholar 

  16. Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Russ. J. Electrochem., 2008, vol. 44, pp. 575–578.

    Article  CAS  Google Scholar 

  17. Lide David, R., Handbook of Chemistry and Physics, 85th ed., New York: CRC Press LLC, 2005.

    Google Scholar 

  18. Aurbach, D., Nonaqueous Electrochemistry, New York: Marsel Dekker, Ink., 1999.

    Book  Google Scholar 

  19. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR-i mass-spektroskopii v organicheskoi khimii (Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Univ., 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kolosnitsyn.

Additional information

Original Russian Text © L.V. Sheina, E.V. Kuz’mina, E.V. Karaseva, A.G. Gallyamov, T.R. Prosochkina, V.S. Kolosnitsyn, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 9, pp. 1257–1264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheina, L.V., Kuz’mina, E.V., Karaseva, E.V. et al. Thermochemical and Electrochemical Stability of Electrolyte Systems based on Sulfolane. Russ J Appl Chem 91, 1427–1433 (2018). https://doi.org/10.1134/S1070427218090045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218090045

Keywords

Navigation