Skip to main content
Log in

Epoxy Coatings with Low Surface Energy from Powdered Compounds Modified with Finely Dispersed Polytetrafluoroethylene Particles

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Highly hydrophobic epoxy coatings with the surface energy as low as 14.5 mJ m–2 and contact angles with water of 120°–150° were prepared from powdered compounds modified with less than 2 wt % finely dispersed polytetrafluoroethylene particles by dry mixing. As shown by scanning electron microscopy, EDX microanalysis, and atomic-force microscopy, the film formation at 180°С and formation of a polymer network matrix are accompanied by predominant migration of polytetrafluoroethylene particles to the air/coating interface, leading to gradient distribution of fluorine across the film and significant enrichment of the coating surface with fluorine. By varying the polytetrafluoroethylene content, it is possible to obtain hydrophobic coatings with satisfactory physicomechanical properties, smooth or rough surface, including micrometric and nanometric roughness, and different surface energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boinovich, L.B. and Emel’yanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 583–600.

    Article  CAS  Google Scholar 

  2. Feng, X.J. and Jiang, L., Adv. Mater., 2006, vol. 18, pp. 3063–3078.

    Article  CAS  Google Scholar 

  3. Tang, W., Huahg, Y., Meng, W., and Qihg, F.L., Eur. Polym. J., 2010, vol. 46, pp. 506–518.

    Article  CAS  Google Scholar 

  4. Feng, L., Li, S., Li, X., et al., Adv. Mater., 2002, vol. 14, no. 24, pp. 1857–1860.

    Article  CAS  Google Scholar 

  5. Legars, M., Margaillan, A., and Bressy, Ch., Chem. Rev., 2012, vol. 112, pp. 4347–4390.

    Article  CAS  Google Scholar 

  6. Genzer, J. and Efimenko, K., Biofouling, 2006, vol. 22, no. 5, pp. 339–360.

    Article  CAS  PubMed  Google Scholar 

  7. Marmur, A., Biofouling, 2006, vol. 22, no. 2, pp. 107–115.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L., Xia, Ch., and Qian, P., Prog. Org. Coat., 2017, vol. 109, pp. 22–29.

    Article  CAS  Google Scholar 

  9. Wang, Y., Betts, D., Finlay, J., et al., Macromolecules, 2011, vol. 44, pp. 878–885.

    Article  CAS  Google Scholar 

  10. Weinman, C.J., Finlay, J., Park, D., et al., Langmuir, 2009, vol. 25, pp. 12266–12274.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, J., Song, L., Yin, J., and Ming, W., Chem. Commun., 2013, vol. 49, pp. 9191–9193.

    Article  CAS  Google Scholar 

  12. Wu, D., Ming, W., van Benthem, R., and de With, G., J. Adhes. Sci. Technol., 2008, vol. 22, pp. 1869–1881.

    Article  CAS  Google Scholar 

  13. Semenov, V.V., Rozov, E.N., and Kotomina, V.E., Lakokras. Mater. Ikh Primen., 2015, no. 9, pp. 48–51.

    Google Scholar 

  14. Burkarter, E., Saul, C.K., Thomazi, F., et al., Surf. Coat. Technol., 2007, vol. 202, pp. 194–198.

    Article  CAS  Google Scholar 

  15. Van de Grampel, R.D., Ming, W., van Gennip, W.J.H., et al., Polymer, 2005, vol. 46, pp. 10531–10537.

    Article  CAS  Google Scholar 

  16. Ming, W., Tian, M., van de Grampel, R.D., et al., Macromolecules, 2002, vol. 35, pp. 6920–6929.

    Article  CAS  Google Scholar 

  17. Kvasnikov, M.Yu. and Tseitlin, G.M., Lakokras. Mater. Ikh Primen., 2006, no. 10, pp. 35–39.

    Google Scholar 

  18. Ming, W., Melis, F., van de Grampel, R.D., et al., Prog. Org. Coat., 2003, vol. 48, pp. 316–321.

    Article  CAS  Google Scholar 

  19. Mashlyakovskii, L.N., Gvozdikova, N.S., Egorova, N.A., and Khomko, E.V., Lakokras. Mater. Ikh Primen., 2015, no. 11, pp. 44–49.

    Google Scholar 

  20. Koz’mina, N.S., Egorova, N.A., Khomko, E.V., and Mashlyakovskii, L.N., Lakokras. Mater. Ikh Primen., 2016, no. 6, pp. 32–37.

    Google Scholar 

  21. Yakovlev, A.D., Zdor, V.F., and Kaplan, V.I., Poroshkovye polimernye materialy i pokrytiya na ikh osnove (Powdered Polymer Materials and Coatings Based on Them), Leningrad: Khimiya, 1971.

    Google Scholar 

  22. Lang, P.G. de, Powder Coatings Chemistry and Technology, William Andrew, 2004, 2nd ed.

    Google Scholar 

  23. Awaya, F., Gilbert, M., Kelly, G., et al., Prog. Polym. Sci., 2009, vol. 34, pp. 949–965.

    Google Scholar 

  24. Sato, T., Tsugaru, Osh., Yamanchi, J., and Okaya, T., Polymer, 1991, vol. 33, pp. 5066–5072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Mashlyakovskii.

Additional information

Original Russian Text © L.N. Mashlyakovskii, N.S. Koz’mina, N.A. Egorova, E.V. Khomko, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 4, pp. 560−571.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashlyakovskii, L.N., Koz’mina, N.S., Egorova, N.A. et al. Epoxy Coatings with Low Surface Energy from Powdered Compounds Modified with Finely Dispersed Polytetrafluoroethylene Particles. Russ J Appl Chem 91, 629–640 (2018). https://doi.org/10.1134/S1070427218040158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218040158

Navigation