Skip to main content
Log in

Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Study of the phase composition and morphology of products formed in a hydrothermal treatment of the Ni(OH)2–GeO2–H2O system with Ni/Ge cation molar ratios of 1, 1.5, and 2 in water and in aqueous solutions of HCl and NaOH demonstrated that the hydrothermal treatment products are composed of particles with plate-like morphology and average plate thickness of 40 nm and width of 500 nm. In this case, the phase composition of the products depends both on the molar ratio between the Ni and Ge cations and on the composition of the hydrothermal medium. Single-phase samples with structure similar to that of lizardite were obtained by treatment of a mixture with Ni/Ge = 1 in an alkaline medium or in a mixture with Ni/Ge = 1.5, irrespective of the composition of the medium. With the excess of GeO2, a talc-like phase is formed, whereas with the excess of Ni(OH)2, the samples contain crystalline nickel hydroxide in addition to the lizardite-like phase. Possessing magnetic and semiconductor properties, the single-phase nanopowders obtained in the study are promising as functional nanodispersed fillers of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierini, F., Foresti, E., Fracasso, G., et al., Isr. J. Chem., 2010, vol. 50, no. 4, pp. 484–499.

    Article  CAS  Google Scholar 

  2. Lvov, Y., Wang, W., Zhang, L., and Fakhrullin, R., Adv. Mater., 2016, vol. 28, no. 6, pp. 1227–1250.

    Article  CAS  Google Scholar 

  3. Yudin, V.E., Otaigbe, J.U., Svetlichnyi, V.M., et al., eXPRESS Polym. Lett., 2008, vol. 2, no. 7, pp. 485–493.

    Article  CAS  Google Scholar 

  4. Rybisski, P. and Janowska, G., J. Therm. Anal. Calorim., 2013, vol. 113, no. 1, pp. 31–41.

    Article  Google Scholar 

  5. Ryu, J., Ko, J., Lee, H., et al., Macromolecules, 2016, vol. 49, no. 5, pp. 1873–1881.

    Article  CAS  Google Scholar 

  6. Kononova, S.V., Korytkova, E.N., Maslennikova, T.P., et al., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, pp. 1136–1142.

    Article  CAS  Google Scholar 

  7. Wu, Y., Yudin, V.E., Otaigbe, J.U., et al., J. Polym. Sci. Part B, 2013, vol. 51, no. 15, pp. 1184–1193.

    Article  CAS  Google Scholar 

  8. Gubanova, G.N., Kononova, S.V., Cristea, M., et al., Russ. J. Gen. Chem. 2015, vol. 85, no. 6, pp. 1496–1505.

    Article  CAS  Google Scholar 

  9. Yuan, P., Tan, D., and Annabi-Bergaya, F., Appl. Clay Sci., 2015, vols. 112–113, pp. 75–93.

    Article  Google Scholar 

  10. Kuroda, Y., Ito, K., Itabashi, K., and Kuroda, K., Langmuir, 2011, vol. 27, no. 5, pp. 2028–2035.

    Article  CAS  Google Scholar 

  11. Texter, J., Angew. Chem., 2015, vol. 54, no. 35, pp. 10258–10262.

    Article  CAS  Google Scholar 

  12. Korytkova, E.N. and Pivovarova, L.N., Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 53–60.

    Article  CAS  Google Scholar 

  13. White, R.D., Bavykin, D.V., and Walsh, F.C., J. Phys. Chem. C, 2012, vol. 116, no. 15, pp. 8824–8833.

    Article  CAS  Google Scholar 

  14. Shafia, E., Esposito, S., Manzoli, M., et al., J. Nanopart. Res., 2015, vol. 17, no. 8, p. 336.

    Article  Google Scholar 

  15. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., et al., Inorg. Mater., 2005, vol. 41, no. 7, pp. 743–749.

    Article  CAS  Google Scholar 

  16. Bloise, A., Belluso, E., Fornero, E., et al., Microp. Mesop. Mater., 2010, vol. 132, nos. 1–2, pp. 239–245.

    Article  CAS  Google Scholar 

  17. Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., et al., Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 338–344.

    Article  Google Scholar 

  18. Foresti, E., Hochella, M.F., Kornishi, H., et al., Adv. Funct. Mater., 2005, vol. 15, no. 6, pp. 1009–1016.

    Article  CAS  Google Scholar 

  19. Bloise, A., Belluso, E., Barrese, E., et al., Cryst. Res. Technol., 2009, vol. 44, no. 6, pp. 590–596.

    Article  CAS  Google Scholar 

  20. Krasilin, A.A. and Gusarov, V.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 12, pp. 1928–1935.

    Article  CAS  Google Scholar 

  21. Krasilin, A.A., Suprun, A.M., Nevedomsky, V.N., and Gusarov, V.V., Dokl. Phys. Chem., 2015, vol. 460, no. 5, pp. 42–44.

    Article  CAS  Google Scholar 

  22. Krasilin, A.A., Suprun, A.M., and Gusarov, V.V., Russ. J. Appl. Chem., 2013, vol. 86, no. 11, pp. 1633–1637.

    Article  CAS  Google Scholar 

  23. Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., et al., Adv. Funct. Mater., 2007, vol. 17, no. 16, pp. 3332–3338.

    Article  CAS  Google Scholar 

  24. Nyapshaev, I.A., Shcherbin, B.O., Ankudinov, A.V., et al. Nanosyst.: Phys., Chem., Math., 2011, vol. 2, no. 2, pp. 48–57.

    Google Scholar 

  25. Yang, Y., Liang, Q., Li, J., et al., Nano Res., 2011, vol. 4, no. 9, pp. 882–890.

    Article  CAS  Google Scholar 

  26. Krasilin, A.A., Semenova, A.S., Kellerman, D.G., et al., EPL, 2016, vol. 113, no. 4, p. 47006.

    Article  Google Scholar 

  27. Roy, D.M. and Roy, R., Am. Mineral., 1954, vol. 53, nos. 11–12, pp. 957–975.

    Google Scholar 

  28. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., et al., Glass Phys. Chem., 2004, vol. 30, no. 1, pp. 51–55.

    Article  CAS  Google Scholar 

  29. Falini, G., Foresti, E., Gazzano, M., et al., Chemistry, 2004, vol. 10, no. 12, pp. 3043–3049.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasilin.

Additional information

Original Russian Text © A.A. Krasilin, E.K. Khrapova, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 1, pp. 25−30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasilin, A.A., Khrapova, E.K. Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology. Russ J Appl Chem 90, 22–27 (2017). https://doi.org/10.1134/S1070427217010049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217010049

Navigation