Skip to main content
Log in

Preparation and properties of hyperbranched polymer containing functionalized Nano-SiO2 for low-moderate permeability reservoirs

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A novel water-soluble hyperbranched polymer (AA/AM/SMNS) consisting of functionalized Nano-SiO2 as the core was synthesized by free-radical polymerization for low-moderate permeability reservoirs. The AA/AM/SMNS was carefully characterized by spectroscopic and electronic technologies. It was found that the microscopic structures of AA/AM/SMNS was denser and more regular in comparison to the linear polymer HPAM. The hydrodynamic radius of AA/AM/SMNS was 197 nm, less than the HPAM radius of 244 nm with similar molecular weight, so that the AA/AM/SMNS had a good matching relationship with pore throat in midpermeability reservoirs (100–500 mD). Besides, the introduction of Nano-SiO2 endowed the AA/AM/SMNS remarkable thermal stability, shear resistance and viscoelasticity. Based on core flooding experiments, the AA/AM/SMNS could build high resistance factor and residual resistance factor in the corresponding porous medium. Furthermore, the sheared AA/AM/SMNS solution of 1500 mg L–1 performed excellent oil recovery of 15.47% in the 300 mD porous medium, which suggested the hyperbranched polymer based on modified Nano-SiO2 have a valuable prospect for enhancing oil recovery in low-moderate permeability reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, Z., Li, Z., Yu, C., Hou, J., Wei, M., Bai, B., and Hu, Y., J. Nat. Gas Sci. Eng. 2014, vol. 21, pp. 764–771.

    Article  CAS  Google Scholar 

  2. You, L. and Kang, Y., 8th European Formation Damage Conference, Scheveningen, Netherlands, 2009.

    Google Scholar 

  3. Zeng, L. and Li, X.Y., Aapg. Bull., 2009, vol. 93, pp. 461–477.

    Article  Google Scholar 

  4. Zhao, F., Tang, H., Meng, Y., Li, G., and Xing, X., Petrol. Explor. Dev., 2009, vol. 36, pp. 113–119.

    Article  Google Scholar 

  5. Wang, D., Li, Z., Zhao, J., He, Y., and Hao, F., Acta Petrolei. Sinica, 2007, vol. 28, pp. 78–81.

    Google Scholar 

  6. Wright, C.A. and Conant, R.A., SPE Annual Technical Conference and Exhibition, Dallas, 1995.

    Google Scholar 

  7. Liu, P. and Zhang, X., Int. J. Hydrogen. Energ., 2015, vol. 40, pp. 12849–12853.

    Article  CAS  Google Scholar 

  8. Shangguan, Y., Zhang, Y., and Xiong, W., Petroleum, 2015, vol. 1, pp. 300–306.

    Article  Google Scholar 

  9. Pu, W.F., Liu, R., Li, B., Jin, F.Y., Peng, Q., Sun, L., Du, D.J., and Yao, F.S., RSC. Adv., 2015, vol. 5, pp. 88002–88013.

    Article  CAS  Google Scholar 

  10. Hu, Z. and Chen, G., J. Mater. Chem. A, 2014, vol. 2, pp. 13593–13601.

    Article  CAS  Google Scholar 

  11. Li, K., Duan, M., Wang, H., Zhang, J., and Jing, B., RSC. Adv. 2015, vol. 5, pp. 17389–17395.

    Article  CAS  Google Scholar 

  12. Guo, Y., Liu, J., Zhang, X., Feng, R., Li, H., Zhang, J., Lv, X., and Luo, P., Energy Fuels, 2012, vol. 26, pp. 2116–2123.

    Article  CAS  Google Scholar 

  13. Wang, B., Chen, Y., Liu, S., Wu, H., and Song, H., Colloid. Surface. A, 2006, vol. 287, pp. 170–174.

    Article  CAS  Google Scholar 

  14. Wever, D.A.Z., Picchioni, F., and Broekhuis, A.A., Prog. Polym. Sci., 2011, vol. 36, pp. 1558–1628.

    Article  CAS  Google Scholar 

  15. Lai, N., Zhang, Y., Zeng, F., Wu, T., Zhou, N., Xu, Q., and Ye, Z., Energy Fuels. 2016, vol. 30, pp. 5576–5584.

    Article  CAS  Google Scholar 

  16. Howe, A.M., Clarke, A., and Giernalczyk, D., Soft Matter. 2015, vol. 11, pp. 6419–6431.

    Article  CAS  Google Scholar 

  17. Zaitoun, A., Makakou, P., Blin, N., Al-Maamari, R.S., Al-Hashmi, A.R., and Abdel-Goad, M., SPE. J., 2012, vol. 17, pp. 335–339.

    Article  CAS  Google Scholar 

  18. Wever, D.A.Z., Polgar, L.M., Stuart, M.C.A., Picchioni, F., and Broekhuis, A.A., Ind. Eng. Chem. Res., 2013, vol. 52, pp. 16993–17005.

    Article  CAS  Google Scholar 

  19. Kuang, W. and Xia, Y., Mater. Lett., 2014, 115, pp. 109–112.

    Article  CAS  Google Scholar 

  20. Liu, X.Q., Wang, Y., Yang, W., Liu, Z.Y., Luo, Y., Xie, B.H., Yang, M.B., and Yang, J., Mater. Sci. 2012, 47, pp. 4620–4631.

    Article  CAS  Google Scholar 

  21. Tai, Y., Qian, J., Zhang, Y., and Huang, J., Chem. Eng. J., 2008, vol. 141, pp. 354–361.

    Article  CAS  Google Scholar 

  22. Li, W., I’Abee, R.M.A., and Goossens, J.G.P., Macromol. Chem. Phys. 2013, vol. 214, pp. 2705–2715.

    Article  CAS  Google Scholar 

  23. Song, Y., Yu, J., Dai, D., Song, L., and Jiang, N., Mater. Design. 2014, vol. 64, pp. 687–693.

    Article  CAS  Google Scholar 

  24. Ghorai, S., Sarkar, A., Panda, A.B., and Pal, S., Ind. Eng. Chem. Res., 2013, vol. 52, pp. 9731–9740.

    Article  CAS  Google Scholar 

  25. Haba, Y., Harada, A., Takagishi, T., and Kono, K., J. Am. Chem. Soc., 2004, vol. 126, pp. 12760–12761.

    Article  CAS  Google Scholar 

  26. Kashiwagi, T., Du, F., Douglas, J.F., Winey, K.I., and Harris, R.H., Nat. Mater., 2005, vol. 4, pp. 928–933.

    Article  CAS  Google Scholar 

  27. Jiang, B., Yang, K., Zhang, L., Liang, Z., Peng, X., and Zhang, Y., Talanta. 2014, vol. 122, pp. 278–284.

    Article  CAS  Google Scholar 

  28. Khan, S.B., Rahman, M.M., Jang, E.S., Akhtar, K., and Han, H., Talanta, 2011, vol. 84, pp. 1005–1010.

    Article  CAS  Google Scholar 

  29. Deka, B.K., Mandal, M., and Maji, T.K., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 11881–11891.

    Article  CAS  Google Scholar 

  30. Zhang, C.L. and Yu, S.H., Chem. Soc. Rev., 2014, vol. 43, pp. 4423–4448.

    Article  CAS  Google Scholar 

  31. Khanamiri, H.H., Enge, I.B., Nourani, M., Stensen, J.A., Torsæ ter, O., and Hadia, N., Energy Fuels. 2016, vol. 30, pp. 2705–2713.

    Article  CAS  Google Scholar 

  32. Wei, B., Romero-Zerón, L., and Rodrigue, D., J. Macromol. Sci. B, 2014, vol. 53, pp. 625–644.

    Article  CAS  Google Scholar 

  33. Wei, B., J. Appl. Polym. Sci., 2014, vol. 132, pp. 41598.

    Google Scholar 

  34. Gou, S.H., Luo, S., Liu, T.Y., Zhao, P., He, Y., Pan, Q.L., and Guo, Q.P., New. J. Chem., 2015, vol. 39, pp. 7805–7814.

    Article  CAS  Google Scholar 

  35. Chang, S.H. and Chung, I.J., Macromolecules, 1991, vol. 24, pp. 567–571.

    Article  CAS  Google Scholar 

  36. Xue, L., Agarwal, U.S., and Lemstra, P.J., Macromolecules, 2005, vol. 38, pp. 8825–8832.

    Article  CAS  Google Scholar 

  37. Duan, M., Fang, S.W., Zhang, L.H., Wang, F.X., Zhang, P., and Zhang, J.A., E-Polymers. 2011, vol. 11, pp. 86–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanjun Lai or Zhongbin Ye.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, N., Wu, T., Ye, Z. et al. Preparation and properties of hyperbranched polymer containing functionalized Nano-SiO2 for low-moderate permeability reservoirs. Russ J Appl Chem 89, 1681–1693 (2016). https://doi.org/10.1134/S1070427216100189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216100189

Navigation