Skip to main content
Log in

Copper Catalysts based on carbon–carbon fiburous materials for ethanol dehydrogenation

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The possibility of using new carbon–carbon composites as supports for a copper catalyst for ethanol dehydrogenation was demonstrated. The composites, which represented carbon nanostructures (single-walled carbon nanotubes or carbon nanofibers) attached to the surface of carbon microfibers, were prepared by essentially different procedures. Copper catalysts deposited on these supports exhibited different activity in the ethanol conversion, which is associated with the distribution and size of copper particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serp, P. and Figueiredo, J.L., Carbon Materials for Catalysis, Wiley, 2008.

    Book  Google Scholar 

  2. Kolokol’tsev, S.N., Uglerodnye materialy. Svoistva. Tekhnologii. Primenenie (Carbon Materials. Properties. Technologies. Use), Dolgoprudnyi: Intellekt, 2012.

    Google Scholar 

  3. Lázaro, M.J., Ascaso, S., Pérez-Rodríguez, S., et al., C. R. Chim., 2015, vol. 18, no. 11, pp. 1229–1241.

    Article  Google Scholar 

  4. Fu, T. and Li, Z., Chem. Eng. Sci., 2015, vol. 135, pp. 3–20.

    Article  CAS  Google Scholar 

  5. Konwar, L.J., Boro, J., and Deka, D., Renew. Sustain. Energy Rev., 2014, vol. 29, pp. 546–564.

    Article  CAS  Google Scholar 

  6. Ledoux, M.J., Pham-Huu, C.,Catal. Today, 2005, vols. 102–103, pp. 2–14.

    Article  Google Scholar 

  7. Mikkola, J.P., Aumo, J., Murzin, D.Y., and Salmi, T., Catal. Today, 2005, vol. 105, nos. 3–4, pp. 325–330.

    Article  CAS  Google Scholar 

  8. Kiwi-Minsker, L., Joannet, E., and Renken, A., Chem. Eng. Sci., 2004, vol. 59, nos. 22–23, pp. 4919–4925.

    Article  CAS  Google Scholar 

  9. Höller, V., Radevik, K., Kiwi-Minsker, L., and Renken, A., Ind. Eng. Chem. Res., 2001, vol. 40, no. 6, pp. 1575–1579.

    Article  Google Scholar 

  10. Kiwi-Minsker, L., Ruta, M., Eslanloo-Pereira, T., and Bromley, B., Chem. Eng. Process. Process Intensif., 2010, vol. 49, no. 9, pp. 973–978.

    Article  CAS  Google Scholar 

  11. Downs, W.B. and Baker, R.T.K., Carbon, 1991, vol. 29, pp. 1173–1179.

    Article  CAS  Google Scholar 

  12. Thostenson, E.T., Li, W.Z., Wang, D.Z., et al., J. Appl. Phys., 2002, vol. 91, no. 9, pp. 6034–6037.

    Article  CAS  Google Scholar 

  13. Hung, K.H., Tzeng, S.S., Kuo, W.S., et al., Nanotechnology, 2008, vol. 19, pp. 295602–295610.

    Article  Google Scholar 

  14. Dikonimos, M.T., Giorgi, R., Lisi, N., et al., Carbon Nanostruct., 2005, vol. 13, pp. 383–392.

    Article  Google Scholar 

  15. Susi, T., Nasibulin, A.G., Jiang, H., and Kauppinen, E.I., Nanomaterials J., 2008, pp. 425195–425202.

    Google Scholar 

  16. Gupta, A., Deva, D., Sharma, A., and Verma, N., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 9697–9707.

    Article  CAS  Google Scholar 

  17. Bekyarova, E., Thostenson, E.T., Yu, A., et al., Langmuir, 2007, vol. 23, pp. 3970–3974.

    Article  CAS  Google Scholar 

  18. He, X.D., Zhang, F.H., Wang, R.G., and Liu, W.B., Carbon, 2007, vol. 45, pp. 2559–2563.

    Article  CAS  Google Scholar 

  19. Laachachi, A., Vivet, A., Nouet, G., et al., Mater. Lett., 2007, vol. 62, pp. 394–397.

    Article  Google Scholar 

  20. Karapappas, P., Tsantzalis, S., Fiamegou, E., et al., Adv. Compos. Lett., 2008, vol. 17, pp. 103–107.

    Google Scholar 

  21. Zhang, F.H., Wang, R.G., He, X.D., et al., J. Mater. Sci., 2009, vol. 44, pp. 3574–3577.

    Article  CAS  Google Scholar 

  22. Singhal, R., Sharma, A., and Verma, N., Ind. Eng. Chem. Res., 2008, vol. 47, pp. 3700–3707.

    Article  CAS  Google Scholar 

  23. Holmen, A., Venvik, J., Myrstad, R., et al., Catal. Today, 2013, vol. 216, pp. 150–157.

    Article  CAS  Google Scholar 

  24. Gallo, J.M.R., Bueno, J.M.C., and Schuchardt, U., J. Braz. Chem. Soc., 2014, vol. 25, pp. 2229–2238.

    CAS  Google Scholar 

  25. Ponomareva, E.A., Egorova, E.V., Bokarev, D.A., and Parastaev, A.S., Vestn. Mosk. Inst. Tonk. Khim. Tekhnol., 2013, vol. 8, no. 6, pp. 20–26.

    CAS  Google Scholar 

  26. Baur, G.B., Yuranov, I., and Kiwi-Minsker, L., Catal. Today, 2015, vol. 249, pp. 252–258.

    Article  CAS  Google Scholar 

  27. RF Patent 2465198, Publ. 2012.

  28. Tokareva, I.V., Mishakov, I.V., Korneev, D.V., et al., Nanotechnol. Russia, 2015, vol. 10, nos. 1–2, pp. 158–164.

    Article  CAS  Google Scholar 

  29. Ponomareva, E.A., Egorova, E.V., Parastaev, A.S., et al., Vestn. Mosk. Inst. Tonk. Khim. Tekhnol., 2014, vol. 9, no. 5, pp. 37–43.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ponomareva.

Additional information

Original Russian Text © E.A. Ponomareva, V.M. Shkinev, S.V. Zaglyadova, I.V. Krasnikova, E.V. Egorova, 2016, published in Zhurnal Prikladnoi Khimii, 2016, Vol. 89, No. 4, pp. 484−488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, E.A., Shkinev, V.M., Zaglyadova, S.V. et al. Copper Catalysts based on carbon–carbon fiburous materials for ethanol dehydrogenation. Russ J Appl Chem 89, 598–602 (2016). https://doi.org/10.1134/S1070427216040121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427216040121

Navigation