Skip to main content
Log in

Effect of the catalytic system based on multi-walled carbon nanotubes modified with copper nanoparticles on the kinetics of catalytic reduction of germanium tetrachloride by hydrogen

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Effect of a catalyst based on multi-walled carbon nanotubes modified with copper nanoparticles on the kinetics of the catalytic reduction of germanium tetrachloride by hydrogen was studied in the temperature range 423–723 K. Results of experiments were used to determine the reaction order and activation energy. A mechanism of the occurring reaction is suggested on the basis of the data obtained. The introduction of catalysts based on multi-walled carbon nanotubes modified with copper nanoparticles made it possible to lower the reaction temperature and achieve a germanium tetrachloride conversion of about 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vorotyntsev, V.M., Gusev, A.V., and Devyatykh, G.G., Vysokochist. Veshchestva, 1988, no. 1, pp. 5–16.

    Google Scholar 

  2. Khimiya i tekhnologiya redkikh i rasseyannykh elementov. V 2 chastyakh (Chemistry and Technology of Rare and Scattered Elements, in 2 parts), Bol’shakov, K. A., Ed., Moscow: Vysshaya Shkola, 1976, part 1.

    Google Scholar 

  3. Zhigach, A.F. and Stasinevich, D.S., Khimiya gidridov (Chemistry of Hydrides), Leningrad: Khimiya, 1969.

    Google Scholar 

  4. Devyatykh, G.G. and Zorin, A.D., Letuchie neorganicheskie gidridy osoboi chistoty (Special-Purity Volatile Inorganic Hydrides), Moscow: Nauka, 1974.

    Google Scholar 

  5. EP Patent 1654400 A2, 2006.

  6. WO Patent 2005005673 A2, 2005.

  7. CN Patent 1820093A, 2006.

  8. Vorotyntsev, V.M., Drozdov, P.N., Vorotyntsev, I.V., and Smirnov, K.Y., Desalination, 2006, vol. 200, no. 1, pp. 232–233.

    Article  CAS  Google Scholar 

  9. Vorotyntsev, V.M., Drozdov, P.N., and Vorotyntsev, I.V., Desa lination, 2009, vol. 240, nos. 1–3, pp. 301–305.

    Article  CAS  Google Scholar 

  10. Vorotyntsev, V.M., Mochalov, G.M., Shishkin, A.O., and Suvorov, S.S., J. Analyt. Chem., 2010, vol. 65, no. 6, pp. 634–639.

    Article  CAS  Google Scholar 

  11. Nguen Van Hai V., Hein, K., and Moller, B., Neue Hutte, 1971, vol. 16, no. 8, pp. 465–471.

    Google Scholar 

  12. Petrusevich, I.V., Nisel’son, L.A., and Belyaev, A.I., Izv. Akad. Nauk SSSR, Neorg. Mater., 1966, vol. 2, no. 6, pp. 1105–1111.

    CAS  Google Scholar 

  13. Grossman, J.J., J. Electrochem. Soc., 1966, vol. 110, no. 10, pp. 1065–1074.

    Article  Google Scholar 

  14. Hag, K.E. and Muench, W., J. Electrochem. Soc., 1966, vol. 113, no. 3, pp. 260–266.

    Article  CAS  Google Scholar 

  15. Tamara, K., Boudart, M., and Taylor, M., J. Phys. Chem., 1955, vol. 59, no. 9, pp. 801–805.

    Article  Google Scholar 

  16. Coon, P.A., Wise, M.L., and George, S.M., Surf. Sci., 1992, vol. 278, pp. 383–396.

    Article  CAS  Google Scholar 

  17. Qingzhu Zhang, Yueshu Gu, and Shaokun Wang, J. Chem., 2003, vol. 107, pp. 3884–3890.

    CAS  Google Scholar 

  18. Galkin, M.S. and Zelentsov, S.V., Vestn. Nizhegorod. Univ. im. N. I. Lobachevskogo, 2013, nos. 3-1, pp. 84–90.

    Google Scholar 

  19. Qingzhu Zhang, Dongju Zhang, Shaokun Wang, and Yueshu Gu, J. Phys. Chem. A, 2002, vol. 106, no. 1, pp. 122–129.

    Article  CAS  Google Scholar 

  20. Masipa, P.M., Magadzu, T., and Mkhonde, B., J. Chem., 2013, vol. 66, pp. 173–178.

    CAS  Google Scholar 

  21. Asad, M. and Shekhi, M.H., Sens. Actuators, B, 2014, vol. 198, no. 1, pp. 134–141.

    Article  CAS  Google Scholar 

  22. Mohan, R., Shanmugharaj, A.M., and Hun, R.S., Appl. Biomater., 2011, vol. 96, no. 1, pp. 121–126.

    Google Scholar 

  23. Vorotyntsev, A.V., Mochalov, G.M., and Vorotyntsev, V.M., Inorg. Mater., 2013, vol. 49, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  24. Vorotyntsev, A.V., Zelentsov, S.V., Vorotyntsev, V.M., et al., Russ. Chem. Bull., 2015, no. 4, pp. 759–765.

    Google Scholar 

  25. Bohmhammel, K., Roewer, G., and Grin, Y., Doctoral Sci. Dissertation, Untersuchun gen zur Reaktivitdt im stofflichen System Ge-Metall-Cl-H, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vorotyntsev.

Additional information

Original Russian Text © A.V. Kadomtseva, A.V. Vorotyntsev, V.M. Vorotyntsev, A.N. Petukhov, A.M. Ob”edkov, K.V. Kremlev, B.S. Kaverin, 2015, published in Zhurnal Prikladnoi Khimii, 2015, Vol. 88, No. 4, pp. 563–570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadomtseva, A.V., Vorotyntsev, A.V., Vorotyntsev, V.M. et al. Effect of the catalytic system based on multi-walled carbon nanotubes modified with copper nanoparticles on the kinetics of catalytic reduction of germanium tetrachloride by hydrogen. Russ J Appl Chem 88, 595–602 (2015). https://doi.org/10.1134/S1070427215040072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215040072

Keywords

Navigation