Skip to main content
Log in

Ytterbium Ate Complexes with 1,2-Bisimine Ligand: Paramagnetic NMR

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of [(dpp-bian)Yb(DME)2] with one equivalent of dpp-bian and one equivalent of potassium or sodium gave the ate complexes [(dpp-bian)2Yb][K(DME)4] and [(dpp-bian)2Yb][Na(THF)6]. The reaction of [(dpp-bian)YbI(DME)]2 with potassium cyclopentadienide (CpK) led to the complex [{(dpp-bian)CpYb(μ-Cp)· K(Et2O)2}2(μ-Cp)2Yb(THF)2]. In all three compounds, the redox-active dpp-bian exhibits a dianionic state. Yb3+ cations in the prepared compounds determine their paramagnetism. Despite this, resolved 1H and 13C NMR spectra were obtained for [(dpp-bian)2Yb][K(DME)4] and [(dpp-bian)2Yb][Na(THF)6] in THF-d8, which made it possible to assign observed signals. The new compounds were characterized by IR and NMR spectroscopy and elemental analysis (C, H, N). The molecular structure of the prepared complexes was determined by X-ray diffraction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.

REFERENCES

  1. Girard, P., Namy, J.L., and Kagan, H.B., J. Am. Chem. Soc., 1980, vol. 102, no. 8, p. 2693. https://doi.org/10.1021/ja00528a029

    Article  CAS  Google Scholar 

  2. Molander, G.A., Chem. Rev., 1992, vol. 92, no. 1, p. 29. https://doi.org/10.1021/cr00009a002

    Article  CAS  Google Scholar 

  3. Gopalaiah, K. and Kagan, H.B., New J. Chem., 2008, vol. 32, no. 4, p. 607. https://doi.org/10.1039/B718330P

    Article  CAS  Google Scholar 

  4. Krief, A. and Laval, A.-M., Chem. Rev., 1999, vol. 99, no. 3, p. 745. https://doi.org/10.1021/cr980326e

    Article  CAS  PubMed  Google Scholar 

  5. Kagan, H.B. and Namy, J.L., Tetrahedron, 1986, vol. 42, no. 24, p. 6573. https://doi.org/10.1016/S0040-4020(01)82098-6

    Article  CAS  Google Scholar 

  6. Hamann-Gaudinet, B., Namy, J.-L., and Kagan, H.B., J. Organomet. Chem., 1998, vol. 567, no. 1, p. 39. https://doi.org/10.1016/S0022-328X(98)00666-4

    Article  CAS  Google Scholar 

  7. Molander, G.A. and Harris, C.R., Chem. Rev., 1996, vol. 96, no. 1, p. 307. https://doi.org/10.1021/cr950019y

    Article  CAS  PubMed  Google Scholar 

  8. Evans, W.J., Organometallics, 2016, vol. 35, no. 18, p. 3088. https://doi.org/10.1021/acs.organomet.6b00466

    Article  CAS  Google Scholar 

  9. Meyer, G., Angew. Chem. Int. Ed., 2014, vol. 53, no. 14, p. 3550. https://doi.org/10.1002/anie.201311325

    Article  CAS  Google Scholar 

  10. Evans, W.J., Ulibarri, T.A., and Ziller, J.W., J. Am. Chem. Soc., 1990, vol. 112, no. 1, p. 219. https://doi.org/10.1021/ja00157a035

    Article  CAS  Google Scholar 

  11. Evans, W.J. and Ulibarri, T.A., J. Am. Chem. Soc., 1987, vol. 109, no. 14, p. 4292. https://doi.org/10.1021/ja00248a025

    Article  CAS  Google Scholar 

  12. Evans, W. J., Ulibarri, T.A., and Ziller, J.W., J. Am. Chem. Soc., 1990, vol. 112, no. 6, p. 2314. https://doi.org/10.1021/ja00162a036

    Article  CAS  Google Scholar 

  13. Recknagel, A., Stalke, D., Roesky, H.W., and Edelmann, F.T., Angew. Chem., 1989, vol. 101, no. 4, p. 496. https://doi.org/10.1002/ange.19891010430

    Article  Google Scholar 

  14. Evans, W.J., Keyer, R.A., Zhang, H., and Atwood, J.L., J. Chem. Soc. Chem. Commun., 1987, vol, no. 11, p. 837. https://doi.org/10.1039/C39870000837

    Article  Google Scholar 

  15. Evans, W.J., Bloom, I., Hunter, W.E., and Atwood, J.L., J. Am. Chem. Soc., 1983, vol. 105, no. 5, p. 1401. https://doi.org/10.1021/ja00343a071

    Article  CAS  Google Scholar 

  16. Evans, W.J., Gonzales, S.L., and Ziller, J.W., J. Am. Chem. Soc., 1991, vol. 113, no. 19, p. 7423. https://doi.org/10.1021/ja00019a050

    Article  CAS  Google Scholar 

  17. Evans, W.J. and Drummond, D.K., J. Am. Chem. Soc., 1989, vol. 111, no. 9, p. 3329. https://doi.org/10.1021/ja00191a034

    Article  CAS  Google Scholar 

  18. Evans, W.J., Gonzales, S.L., and Ziller, J.W., J. Am. Chem. Soc., 1994, vol. 116, no. 6, p. 2600. https://doi.org/10.1021/ja00085a046

    Article  CAS  Google Scholar 

  19. Evans, W.J., Grate, J.W., Hughes, L.A., Zhang, H., and Atwood, J.L., J. Am. Chem. Soc., 1985, vol. 107, no. 12, p. 3728. https://doi.org/10.1021/ja00298a060

    Article  CAS  Google Scholar 

  20. Evans, W.J., Seibel, C.A., and Ziller, J.W., Inorg. Chem., 1998, vol. 37, no. 4, p. 770. https://doi.org/10.1021/ic971381t

    Article  CAS  Google Scholar 

  21. Evans, W.J., Ulibarri, T.A., and Ziller, J.W., J. Am. Chem. Soc., 1988, vol. 110, no. 20, p. 6877. https://doi.org/10.1021/ja00228a043

    Article  CAS  Google Scholar 

  22. Evans, W.J., Montalvo, E., Foster, S.E., Harada, K.A., and Ziller, J.W., Organometallics, 2007, vol. 26, no. 11, p. 2904. https://doi.org/10.1021/om070176a

    Article  CAS  Google Scholar 

  23. Evans, W.J. and Drummond, D.K., Organometallics, 1988, vol. 7, no. 4, p. 797. https://doi.org/10.1021/om00094a001

    Article  CAS  Google Scholar 

  24. Konchenko, S.N., Pushkarevsky, N.A., Gamer, M.T., Köppe, R., Schnöckel, H., and Roesky, P.W., J. Am. Chem. Soc., 2009, vol. 131, no. 16, p. 5740. https://doi.org/10.1021/ja901045m

    Article  CAS  PubMed  Google Scholar 

  25. Alonso-Moreno, C., Antiñolo, A., CarrilloHermosilla, F., and Otero, A., Chem. Soc. Rev., 2014, vol. 43, no. 10, p. 3406. https://doi.org/10.1039/C4CS00013G

    Article  CAS  PubMed  Google Scholar 

  26. Trifonov, A.A., Basalov, I.V., and Kissel, A.A., Dalton Trans., 2016, vol. 45, no. 48, p. 19172. https://doi.org/10.1039/C6DT03913H

    Article  CAS  PubMed  Google Scholar 

  27. Khristolyubov, D.O., Lyubov, D.M., Shavyrin, A.S., Cherkasov, A.V., Fukin, G.K., and Trifonov, A.A., Inorg. Chem. Front., 2020, vol. 7, no. 13, p. 2459. https://doi.org/10.1039/D0QI00369G

    Article  CAS  Google Scholar 

  28. Selikhov, A.N., Plankin, G.S., Cherkasov, A.V., Shavyrin, A.S., Louyriac, E., Maron, L., and Trifonov, A.A., Inorg. Chem., 2019, vol. 58, no. 8, p. 5325. https://doi.org/10.1021/acs.inorgchem.9b00490

    Article  CAS  PubMed  Google Scholar 

  29. Weiss, C.J. and Marks, T.J., Dalton Trans., 2010, vol. 39, no. 29, p. 6576. https://doi.org/10.1039/C003089A

    Article  CAS  PubMed  Google Scholar 

  30. Lyubov, D.M., Tolpygin, A.O., and Trifonov, A.A., Coord. Chem. Rev., 2019, vol. 392, no, p. 83. https://doi.org/10.1016/j.ccr.2019.04.013

    Article  CAS  Google Scholar 

  31. Dodonov, V.A., Skatova, A.A., and Fedushkin, I.L., Russ. J. Coord. Chem., 2019, vol. 45, no. 4, p. 301. https://doi.org/10.1134/S1070328419040031

    Article  CAS  Google Scholar 

  32. Dodonov, V.A., Morozov, A.G., Rumyantsev, R.V., Fukin, G.K., Skatova, A.A., Roesky, P.W., and Fedushkin, I.L., Inorg. Chem., 2019, vol. 58, no. 24, p. 16559. https://doi.org/10.1021/acs.inorgchem.9b02592

    Article  CAS  PubMed  Google Scholar 

  33. Chen, W., Dodonov, V.A., Sokolov, V.G., Liu, L., Baranov, E.V., Zhao, Y., Fedushkin, I.L., and Yang, X.-J., Organometallics, 2021, vol. 40, no. 4, p. 490. https://doi.org/10.1021/acs.organomet.0c00738

    Article  CAS  Google Scholar 

  34. Dodonov, V.A., Chen, W., Liu, L., Sokolov, V.G., Baranov, E.V., Skatova, A.A., Zhao, Y., Wu, B., Yang, X.-J., and Fedushkin, I.L., Inorg. Chem., 2021, vol. 60, no. 19, p. 14602. https://doi.org/10.1021/acs.inorgchem.1c01581

    Article  CAS  PubMed  Google Scholar 

  35. Dodonov, V.A., Xiao, L., Kushnerova, O.A., Baranov, E.V., Zhao, Y., Yang, X.-J., and Fedushkin, I.L., Chem. Commun., 2020, vol. 56, no. 54, p. 7475. https://doi.org/10.1039/D0CC03270K

    Article  CAS  Google Scholar 

  36. Fedushkin, I.L., Skatova, A.A., Dodonov, V.A., Yang, X.-J., Chudakova, V.A., Piskunov, A.V., Demeshko, S., and Baranov, E.V., Inorg. Chem., 2016, vol. 55, no. 17, p. 9047. https://doi.org/10.1021/acs.inorgchem.6b01514

    Article  CAS  PubMed  Google Scholar 

  37. Dodonov, V.A., Kushnerova, O.A., Rumyantsev, R.V., and Fedushkin, I.L., Russ. Chem. Bull., 2022, vol. 71, no. 8, p. 1760. https://doi.org/10.1007/s11172-022-3587-y

    Article  CAS  Google Scholar 

  38. Dodonov, V.A., Kushnerova, O.A., Razborov, D.A., Baranov, E.V., Ulivanova, E.A., Lukoyanov, A.N., and Fedushkin, I.L., Russ. Chem. Bull., 2022, vol. 71, no. 2, p. 322. https://doi.org/10.1007/s11172-022-3414-5

    Article  CAS  Google Scholar 

  39. Dodonov, V.A., Kushnerova, O.A., Rumyantsev, R.V., Ulivanova, E.A., Lukoyanov, A.N., Razborov, D.A., and Fedyushkin, I.L., Russ. J. Coord. Chem., 2022, vol. 48, no. 7, p. 412. https://doi.org/10.1134/S107032842207003X

    Article  CAS  Google Scholar 

  40. Fedushkin, I.L., Lukina, D.A., Skatova, A.A., Lukoyanov, A.N., and Cherkasov, A.V., Chem. Commun., 2018, vol. 54, no. 92, p. 12950. https://doi.org/10.1039/C8CC08108E

    Article  CAS  Google Scholar 

  41. Dodonov, V.A., Sokolov, V.G., Baranov, E.V., Skatova, A.A., Xu, W., Zhao, Y., Yang, X.-J., and Fedushkin, I.L., Inorg. Chem., 2022, vol. 61, no. 38, p. 14962. https://doi.org/10.1021/acs.inorgchem.2c01296

    Article  CAS  PubMed  Google Scholar 

  42. Fedushkin, I.L., Skatova, A.A., Dodonov, V.A., Chudakova, V.A., Bazyakina, N.L., Piskunov, A.V., Demeshko, S.V., and Fukin, G.K., Inorg. Chem., 2014, vol. 53, no. 10, p. 5159. https://doi.org/10.1021/ic500259k

    Article  CAS  PubMed  Google Scholar 

  43. Fedushkin, I.L., Maslova, O.V., Morozov, A.G., Dechert, S., Demeshko, S., and Meyer, F., Angew. Chem. Int. Ed., 2012, vol. 51, no. 42, p. 10584. https://doi.org/10.1002/anie.201204452

    Article  CAS  Google Scholar 

  44. Dodonov, V.A., Makarov, V.M., Zemnyukova, M.N., Razborov, D.A., Baranov, E.V., Bogomyakov, A.S., Ovcharenko, V.I., and Fedushkin, I.L., Organometallics, 2023, vol. 42, no. 18, p. 2558. https://doi.org/10.1021/acs.organomet.2c00640

  45. Dodonov, V.A., Kushnerova, O.A., Baranov, E.V., Novikov, A.S., and Fedushkin, I.L., Dalton Trans., 2021, vol. 50, no. 25, p. 8899. https://doi.org/10.1039/D1DT01199E

    Article  CAS  PubMed  Google Scholar 

  46. Dodonov, V.A., Kushnerova, O.A., Rumyantsev, R.V., Novikov, A.S., Osmanov, V.K., and Fedushkin, I.L., Dalton Trans., 2022, vol. 51, no. 10, p. 4113. https://doi.org/10.1039/D1DT04366H

    Article  CAS  PubMed  Google Scholar 

  47. Liddle, S.T., in Encyclopedia of Inorganic and Bioinorganic Chemistry, 2012, pp. 1–21, https://doi.org/10.1002/9781119951438.eibc2082

  48. Zimmermann, M. and Anwander, R., Chem. Rev., 2010, vol. 110, no. 10, p. 6194. https://doi.org/10.1021/cr1001194

    Article  CAS  PubMed  Google Scholar 

  49. Ortu, F., Chem. Rev., 2022, vol. 122, no. 6, p. 6040. https://doi.org/10.1021/acs.chemrev.1c00842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, W., Song, H., Li, J., and Cui, C., Angew. Chem. Int. Ed., 2020, vol. 59, no. 6, p. 2365. https://doi.org/10.1002/anie.201913773

    Article  CAS  Google Scholar 

  51. Queffelec, C., Boeda, F., Pouilhès, A., Meddour, A., Kouklovsky, C., Hannedouche, J., Collin, J., and Schulz, E., ChemCatChem, 2011, vol. 3, no. 1, p. 122. https://doi.org/10.1002/cctc.201000323

    Article  CAS  Google Scholar 

  52. Zhu, D., Wang, M., Guo, L., Shi, W., Li, J., and Cui, C., Organometallics, 2021, vol. 40, no. 15, p. 2394. https://doi.org/10.1021/acs.organomet.1c00337

    Article  CAS  Google Scholar 

  53. Pan, X., Wu, C., Fang, H., and Yan, C., Inorg. Chem., 2022, vol. 61, no. 36, p. 14288. https://doi.org/10.1021/acs.inorgchem.2c01830

    Article  CAS  PubMed  Google Scholar 

  54. Pöcheim, A., Marschner, C., and Baumgartner, J., Inorg. Chem., 2021, vol. 60, no. 11, p. 8218. https://doi.org/10.1021/acs.inorgchem.1c00904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meermann, C., Gerstberger, G., Spiegler, M., Törnroos, K.W., and Anwander, R., Eur. J. Inorg. Chem., 2008, vol. 2008, no. 12, p. 2014. https://doi.org/10.1002/ejic.200800050

    Article  CAS  Google Scholar 

  56. Meermann, C., Ohno, K., Törnroos, K.W., Mashima, K., and Anwander, R., Eur. J. Inorg. Chem., 2009, vol. 2009, no. 1, p. 76. https://doi.org/10.1002/ejic.200800649

    Article  CAS  Google Scholar 

  57. Mortis, A., Kracht, F., Berger, T., Lebon, J., MaichleMössmer, C., and Anwander, R., Dalton Trans., 2023, vol. 52, no. 1, p. 44. https://doi.org/10.1039/D2DT03491C

    Article  CAS  Google Scholar 

  58. Sharp, R.R., in Nuclear Magnetic Resonance, Webb, G.A., Ed., The Royal Society of Chemistry, 2003, vol. 32, p. 473.

  59. Kime, K.A. and Sievers, R.E., Aldrichim. Acta, 1977, vol. 10, no. 4, p. 54.

    CAS  Google Scholar 

  60. Zhang, W., Dodonov, V.A., Chen, W., Zhao, Y., Skatova, A.A., Fedushkin, I.L., Roesky, P.W., Wu, B., and Yang, X.-J., Chem. Eur. J., 2018, vol. 24, no. 56, p. 14994. https://doi.org/10.1002/chem.201802469

    Article  CAS  PubMed  Google Scholar 

  61. Hill, N.J., Reeske, G., Moore, J.A., and Cowley, A.H., Dalton Trans., 2006, vol, no. 40, p. 4838. https://doi.org/10.1039/B609737E

    Article  Google Scholar 

  62. Fedushkin, I.L., Maslova, O.V., Lukoyanov, A.N., and Fukin, G.K., Compt. Rend. Chim., 2010, vol. 13, nos. 6–7, p. 584. https://doi.org/10.1016/j.crci.2010.05.011

    Article  CAS  Google Scholar 

  63. Lelli, M. and Di Bari, L., Dalton Trans., 2019, vol. 48, no. 3, p. 882. https://doi.org/10.1039/C8DT03090A

    Article  CAS  PubMed  Google Scholar 

  64. Ripoli, S., Scarano, S., Di Bari, L., and Salvadori, P., Biorg. Med. Chem., 2005, vol. 13, no. 17, p. 5181. https://doi.org/10.1016/j.bmc.2005.05.034

    Article  CAS  Google Scholar 

  65. Piguet, C. and Geraldes, C.F.G.C., in Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Bünzli, J.C.G., and Pecharsky, V.K., Eds., Elsevier, 2003, p. 353.

  66. Gansow, O.A., Loeffler, P.A., Davis, R.E., Lenkinski, R.E., Wilcott, M.R., III, J. Am. Chem. Soc., 1976, vol. 98, no. 14, p. 4250. https://doi.org/10.1021/ja00430a041

    Article  CAS  Google Scholar 

  67. Lisowski, J., Ripoli, S., and Di Bari, L., Inorg. Chem., 2004, vol. 43, no. 4, p. 1388. https://doi.org/10.1021/ic0353918

    Article  CAS  PubMed  Google Scholar 

  68. Di Bari, L., Pintacuda, G., Ripoli, S., and Salvadori, P., Magnetic Resonance in Chemistry, 2002, vol. 40, no. 6, p. 396. https://doi.org/10.1002/mrc.1026

    Article  CAS  Google Scholar 

  69. Eggers, S.H., Kopf, J., and Fischer, R.D., Acta Crystallogr. (C), 1987, vol. 43, no. 12, p. 2288. https://doi.org/10.1107/S0108270187088036

    Article  Google Scholar 

  70. Dinnebier, R.E., Behrens, U., and Olbrich, F., Organometallics, 1997, vol. 16, no. 17, p. 3855. https://doi.org/10.1021/om9700122

    Article  CAS  Google Scholar 

  71. Suturina, E.A., Mason, K., Geraldes, C.F.G.C., Chilton, N.F., Parker, D., and Kuprov, I., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 26, p. 17676. https://doi.org/10.1039/C8CP01332B

  72. Armarego, W.L.F., in Purification of Laboratory Chemicals, Armarego, W.L. and Butterworth-Heinemann, F. , Eds., 2017, p. 95.

  73. Paulovicova, A., El-Ayaan, U., Shibayama, K., Morita, T., and Fukuda, Y., Eur. J. Inorg. Chem., 2001, vol, no. 10, p. 2641. https://doi.org/10.1002/1099-0682(200109)2001:10<2641::AID-EJIC2641>3.0.CO;2-C

    Article  Google Scholar 

  74. APEX4. Bruker Molecular Analysis Research Tool, v. 2021.4-0. Madison (WI, USA): Bruker AXS Inc., 2021.

  75. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.40.67a. Software Package, Rigaku OD, 2019.

  76. Bruker SAINT Data Reduction and Correction Program v. 8.40B, Bruker AXS, Madison, Wisconsin, USA, 2019.

  77. Krause, L., Herbst-Irmer, R., Sheldrick, G.M., and Stalke, D., J. Appl. Crystallogr., 2015, vol. 48, no. 1, p. 3. https://doi.org/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sheldrick, G., Acta Crystallogr. (A), 2015, vol. 71, no. 1, p. 3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  79. Sheldrick, G.M., SHELXTL. Version 6.14. Structure Determination Software Suite; Madison (WI, USA): Bruker AXS, 2003.

  80. Sheldrick, G., Acta Crystallogr. (C), 2015, vol. 71, no. 1, p. 3. https://doi.org/

    Google Scholar 

  81. Sheldrick, G.M., SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.

  82. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171.38.46. Software Package, Rigaku OD, 2015.

  83. Spek, A., Acta Crystallogr. (C), 2015, vol. 71, no. 1, p. 9. https://doi.org/10.1107/S2053229614024929

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-20153). The work was carried out using the equipment of the Center for Collective Use “Analytical Center of the IOMC RAS” with the financial support of the grant “Ensuring the development of the material and technical infrastructure of the centers for collective use of scientific equipment” (unique identifier RF-2296.61321X0017, agreement no. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Fedushkin.

Ethics declarations

I.L. Fedushkin is a member of the Editorial Board of the Russian Journal of General Chemistry. The remaining authors declare no conflict of interest.

Additional information

To the 35th Anniversary of the founding of the G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodonov, V.A., Razborov, D.A., Baranov, E.V. et al. Ytterbium Ate Complexes with 1,2-Bisimine Ligand: Paramagnetic NMR. Russ J Gen Chem 93 (Suppl 3), S794–S804 (2023). https://doi.org/10.1134/S1070363223160181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223160181

Keywords:

Navigation