Skip to main content
Log in

Synthesis of (Thio)semicarbazones Combining Adamantane and 3,7-Dimethyloctyl Fragments

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of new (thio)semicarbazones containing adamantane and 3,7-dimethyloctyl fragments was synthesized. The configuration of imine bond was proposed based on the characteristic signals of 1Н and 13С NMR spectra simulated by quantum-chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme

REFERENCES

  1. Spilovska, K., Zemek, F., Korabecny, J., Nepovimova, E., Soukup, O., Windisch, M., and Kuca, K., Curr. Med. Chem., 2016, vol. 23, p. 3245. https://doi.org/10.2174/0929867323666160525114026

    Article  CAS  PubMed  Google Scholar 

  2. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Siwek, A., Sta̧czek, P., and Stefańska, J., Eur. J. Med. Chem., 2011, vol. 46, p. 5717. https://doi.org/10.1016/j.ejmech.2011.09.034

    Article  CAS  PubMed  Google Scholar 

  4. Azam, F., Alkskas, I.A., Khokra, S.L., and Prakash, O., Eur. J. Med. Chem., 2009, vol. 44, p. 203. https://doi.org/10.1016/j.ejmech.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  5. Abdul Manaf, A.M., Momin Khan, M.K., Khair Zaman, K.Z., Mahboob Ali, M.A., Faima Alam, F.A., Khalid Mohammed Khan, and Basharat Ali, K.M.K., J. Chem. Soc. Pakistan, 2021, vol. 43, p. 475. https://doi.org/10.52568/000592/JCSP/43.04.2021

    Article  Google Scholar 

  6. Suslov, E.V., Mozhaytsev, E.S., Korchagina, D.V., Bormotov, N.I., Yarovaya, O.I., Volcho, K.P., Serova, O.A., Agafonov, A.P., Maksyutov, R.A., Shishkina, L.N., and Salakhutdinov, N.F., RSC Med. Chem., 2020, vol. 11, p. 1185. https://doi.org/10.1039/d0md00108b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Munkuev, A.A., Mozhaitsev, E.S., Chepanova, A.A., Suslov, E.V., Korchagina, D.V., Zakharova, O.D., Ilina, E.S., Dyrkheeva, N.S., Zakharenko, A.L., Reynisson, J., Volcho, K.P., Salakhutdinov, N.F., and Lavrik, O.I., Molecules, 2021, vol. 26, p. 1. https://doi.org/10.3390/molecules26113128

    Article  CAS  Google Scholar 

  8. Palanimuthu, D., Wu, Z., Jansson, P.J., Braidy, N., Bernhardt, P.V., Richardson, D.R., and Kalinowski, D.S., Dalton Trans., 2018, vol. 47, p. 7190. https://doi.org/10.1039/c8dt01099d

    Article  CAS  PubMed  Google Scholar 

  9. He, Z.Y., Huang, C.F., and Tian, S.K., Org. Lett., 2017, vol. 19, p. 4850. https://doi.org/10.1021/acs.orglett.7b02312

    Article  CAS  PubMed  Google Scholar 

  10. Kreutzberger, A., Schröders, H.-H., and Stratmann, J., Arch. Pharm., 1984, vol. 317, p. 767. https://doi.org/10.1002/ardp.19843170907

    Article  CAS  Google Scholar 

  11. Al-Abdullah, E.S., Al-Tuwaijri, H.M., Hassan, H.M., Al-Alshaikh, M.A., Habib, E.E., and El-Emam, A.A., Molecules, 2015, vol. 20, p. 8125. https://doi.org/10.3390/molecules20058125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jakusová, K., Gáplovský, M., Donovalová, J., Cigáň, M., Stankovičová, H., Sokolík, R., Gašpar, J., and Gáplovský, A., Chem. Pap., 2013, vol. 67, p. 117. https://doi.org/10.2478/s11696-012-0248-x

    Article  CAS  Google Scholar 

  13. Pracht, P., Bohle, F., and Grimme, S., Phys. Chem. Chem. Phys., 2020, vol. 22, p. 7169. https://doi.org/10.1039/c9cp06869d

    Article  CAS  PubMed  Google Scholar 

  14. Bannwarth, C., Ehlert, S., and Grimme, S., J. Chem. Theory Comput., 2019, vol. 15, p. 1652. https://doi.org/10.1021/acs.jctc.8b01176

    Article  CAS  PubMed  Google Scholar 

  15. Grimme, S., J. Chem. Theory Comput., 2019, vol. 15, p. 2847. https://doi.org/10.1021/acs.jctc.9b00143

    Article  CAS  PubMed  Google Scholar 

  16. Bannwarth, C., Caldeweyher, E., Ehlert, S., Hansen, A., Pracht, P., Seibert, J., Spicher, S., and Grimme, S., WIREs Comput. Mol. Sci., 2021, vol. 11, p. 1. https://doi.org/10.1002/wcms.1493

    Article  CAS  Google Scholar 

  17. Neese, F., WIREs Comput. Mol. Sci., 2012, vol. 2, p. 73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  18. Neese, F., WIREs Comput. Mol. Sci., 2022, vol. 12, p. 1. https://doi.org/10.1002/wcms.1606

    Article  Google Scholar 

  19. Vosko, S.H., Wilk, L., and Nusair, M., Can. J. Phys., 1980, vol. 58, p. 1200. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  20. Becke, A.D., J. Chem. Phys., 1992, vol. 96, p. 2155. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  21. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  22. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, p. 785. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  23. Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., and Pople, J.A., J. Chem. Phys., 1982, vol. 77, p. 3654. https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  24. Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  25. Weigend, F., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 1057. https://doi.org/10.1039/b515623h

    Article  CAS  PubMed  Google Scholar 

  26. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., J. Chem. Phys., 2010, vol. 132, p. 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  27. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1456. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  28. Del Campo, J.M., Gázquez, J.L., Trickey, S.B., and Vela, A., J. Chem. Phys., 2012, vol. 136, article 104108. https://doi.org/10.1063/1.3691197

  29. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  30. Clark, T., Chandrasekhar, J., Spitznagel, G.W., and Schleyer, P.V.R., J. Comput. Chem., 1983, vol. 4, p. 294. https://doi.org/10.1002/jcc.540040303

    Article  CAS  Google Scholar 

  31. McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72, p. 5639. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Pople, J.A., and Binkley, J.S., J. Chem. Phys., 1984, vol. 80, p. 3265. https://doi.org/10.1063/1.447079

    Article  CAS  Google Scholar 

  33. Marenich, A.V., Cramer, C.J., and Truhlar, D.G., J. Phys. Chem. (B), 2009, vol. 113, p. 6378. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  34. Lodewyk, M.W., Siebert, M.R., and Tantillo, D.J., Chem. Rev., 2012, vol. 112, p. 1839. https://doi.org/10.1021/cr200106v

    Article  CAS  PubMed  Google Scholar 

  35. Burmistrov, V.V., Pershin, V.V., and Burov, G.M., Izv. VolGTU, 2012, vol. 5, p. 62.

    Google Scholar 

  36. Claremon, D.A., Singh, S.B., Tice, C.M., Ye, Y., Zhuang, L., Ye, Y., Singh, S.B., and Tice, C.M., Patent US WO 2009131669A2, 2009.

  37. Burmistrov, V.V., Butov, G.M., and Pitushkin, D.A., Russ. J. Org. Chem., 2015, vol. 51, p. 1795. https://doi.org/10.1134/S1070428015120246

    Article  CAS  Google Scholar 

  38. Pitushkin, D.A., Burmistrov, V.V., and Butov, G.M., Russ. J. Org. Chem., 2018, vol. 54, p. 1475. https://doi.org/10.1134/S1070428018100068

    Article  CAS  Google Scholar 

  39. Odinokov, V.N., Ishmuratov, G.Y., Kharisov, R.Y., Lomakina, S.I., and Tolstikov, G.A., Bull. Acad. Sci. USSR Div. Chem. Sci., 1989, vol. 38, p. 1768. https://doi.org/10.1007/BF00956974

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Information and Computing Center of the Novosibirsk State University for the provided computing resources, and also express gratitude to the Chemical Research Center for Collective Use of the Siberian Branch of the Russian Academy of Sciences for carrying out spectral and analytical measurements.

Funding

The work was financially supported by the Russian Science Foundation (grant no. 22-73-00340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mozhaitsev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

To the 120th anniversary of B.A. Arbuzov

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhaitsev, E.S., Marakulin, A.V., Suslov, E.V. et al. Synthesis of (Thio)semicarbazones Combining Adamantane and 3,7-Dimethyloctyl Fragments. Russ J Gen Chem 93 (Suppl 2), S450–S455 (2023). https://doi.org/10.1134/S1070363223150057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223150057

Keywords:

Navigation