Skip to main content
Log in

Bimetallic Ratio Strategy for Efficient Photocatalytic Hydrogen Production

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Bimetallic can be more efficient than the corresponding monometallic catalysts in photocatalytic hydrogen production. The optimal bimetallic ratio is crucial to performance, and there is still little relative research on this problem. Noble metal as a bimetallic co-catalyst can improve the performance of photocatalytic hydrogen production of graphitic carbon nitride. Here, we successfully synthesized a series of carbon nitride (CN) loaded with gold and platinum by adjusting the Pt/Au ratio (total 0.5%). The results show that the optimal doping ratio of Pt-Au is 1 : 1, which displays an excellent H2 production rate of 570.8 μmol/g. This is 32 times higher than CN. And higher than the H2 production rate of 0.5% Pt/CN and 0.5% Au/CN, which is 409.2 and 359 μmol/g. Surface plasmon resonance (SPR) of the Au and Schottky barrier between Pt and CN may be the reason for enhanced Au–Pt/CN photocatalytic performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Lu, C., Wu, E., Li, C., Dou, W., Liang, Y., Xiang, X., and Wang, H., J. Phys. Chem. Solids, 2021, vol. 158, Article 110228. https://doi.org/10.1016/j.jpcs.2021.110228

  2. Liang, S., Xia, Y., Zhu, S., Zheng, S., He, Y., Bi, J., Liu, M., and Wu, L., J. Appl. Surf. Sci., 2015, vol. 358, p. 304. https://doi.org/10.1016/j.apsusc.2015.08.035

    Article  CAS  Google Scholar 

  3. Zhang, H., Zhang, B., Liang, F., Fang, Y., Wang, H., and Chen, A., Arab. J. Chem., 2022, vol.15. https://doi.org/10.1016/j.arabjc.2022.103951

  4. Santos, J.L., León, C., Monnier, G., Ivanova, S., Centeno, M.Á., and Odriozola, J.A., J. Hydrogen Energy, 2020, vol. 45, p. 23056. https://doi.org/10.1016/j.ijhydene.2020.06.076

    Article  CAS  Google Scholar 

  5. Zhou, J., Chen, H., Chen, Q., and Huang, Z., J. Appl. Surf. Sci., 2016, vol. 387, p. 588. https://doi.org/10.1016/j.apsusc.2016.06.154

    Article  CAS  Google Scholar 

  6. Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, M., and Karuppuchamy, S., J. Alloys Compd., 2020, vol. 828, p. 154281. https://doi.org/10.1016/j.jallcom.2020.154281

    Article  CAS  Google Scholar 

  7. Zhang, S., Wang, K., Li, F., and Ho, S., Int. J. Hydrogen Energy, 2022, vol. 4, p. 37517. https://doi.org/10.1016/j.ijhydene.2021.10.139

    Article  CAS  Google Scholar 

  8. Xiong, S., Tang, R., Gong, D., Deng, Y., Zheng, J., Li, L., Zhou, Z., Yang, L., and Su, L., Chin. J. Catal., 2022, vol. 43, p. 1719. https://doi.org/10.1016/S1872-2067(21)63994-3

    Article  CAS  Google Scholar 

  9. Mun, S.J. and Park, S.-J., J. Catalysts, 2019, vol. 9, p. 805. https://doi.org/10.3390/catal9100805

    Article  CAS  Google Scholar 

  10. Zhou, Y., Zhang, L., Qin, L., Kang, S.-Z., and Li, X., J. Int. J. Hydrogen Energy, 2021, vol. 46, p. 27495. https://doi.org/10.1016/j.ijhydene.2021.05.213

    Article  CAS  Google Scholar 

  11. Zhang, S., Zhao, F., Yasin, G., Dong, Y., Zhao, J., Guo, Y., Tsiakaras, P., and Zhao, J., J. Colloid Interface Sci., 2023, vol. 637, p. 41. https://doi.org/10.1016/j.jcis.2023.01.066

    Article  CAS  PubMed  Google Scholar 

  12. Li, K., Lin, Y.-Z., Wang, K., Wang, Y., Zhang, Y., Zhang, Y., Liu, F.-T., J. Appl. Catal. B, 2020, vol. 268, p. 118402. https://doi.org/10.1016/j.apcatb.2019.118402

    Article  CAS  Google Scholar 

  13. Qiu, H., Ma, X., Sun, C., Zhao, B., and Chen, F., J. Appl. Surf. Sci., 2020, vol. 506, p. 145021. https://doi.org/10.1016/j.apsusc.2019.145021

    Article  CAS  Google Scholar 

  14. Bai, L., Li, Y., Zhao, J., Bao, Y., Ji, L., Dai, J., Shi, H., Yang, F., and Zhang, X., ChemCatChem, 2019, vol. 11, p. 2283. https://doi.org/10.1002/cctc.201900125

    Article  CAS  Google Scholar 

  15. Wu, H., Liu, Y., Chen, G., Li, T., Jiang, W., Jia, R., Zhang, M., Yuan, S., Shi, L., and Huang, L., ACS Appl. Nano Mater., 2022, vol. 5, p. 13100. https://doi.org/10.1021/acsanm.2c02886

    Article  CAS  Google Scholar 

  16. Karácsonyi, É., Baia, L., Dombi, A., Danciu, V., Mogyorósi, K., Pop, L.C., Kovács, G., Coşoveanu, V., Vulpoi, A., Simon, S., and Pap, Zs., J. Catal. Today, 2013, vol. 208, p. 19. https://doi.org/10.1016/j.cattod.2012.09.038

    Article  CAS  Google Scholar 

  17. Liu, Y., Naseri, A., Li, T., Ostovan, A., Asadian, E., Jia, R., Shi, L., Huang, L., and Moshfegh, A.Z., ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 16527. https://doi.org/10.1021/acsami.2c01209

    Article  CAS  PubMed  Google Scholar 

  18. Hong, J., Wang, Y., Wang, Y., Zhang, W., and Xu, R., ChemSusChem, 2013, vol. 6, p. 2199. https://doi.org/10.1002/cssc.201301146

    Article  Google Scholar 

  19. Yu, J., Wang, K., Xiao, W., and Cheng, B., Phys. Chem. Chem. Phys., 2014 vol. 16, p. 11492. https://doi.org/10.1039/C4CP00133H

    Article  CAS  PubMed  Google Scholar 

  20. Khabashesku, V. N., Zimmerman, J.L., and Margrave, J.L., Chem. Mater., 2000, vol. 12, p. 3264. https://doi.org/10.1021/cm000328r

    Article  CAS  Google Scholar 

  21. Schwinghammer, K., Tuffy, B., Mesch, M.B., Wirnhier, E., Martineau, C., Taulelle, F., Schnick, W., Senker, J., and Lotsch, B.V., Angew. Chem. Int. Ed., 2013, vol. 125, p. 2495. https://doi.org/10.1002/ange.201206817

    Article  Google Scholar 

  22. He, F., Zhu, B., Cheng, B., Yu, J., Ho, W., and Macyk, W., J. Appl. Catal. (B), 2020, vol. 272, p. 119006. https://doi.org/10.1016/j.apcatb.2020.119006

    Article  CAS  Google Scholar 

  23. Guo, Y., Zhou, Q., Chen, X., Fu, Y., Lan, S., Zhu, M., and Du, Y., J. Mater. Sci. Technol., 2022, vol. 119, p. 53. https://doi.org/10.1016/j.jmst.2021.11.067

    Article  CAS  Google Scholar 

  24. Sun, T., Jiang, H.-Y., Ma, C.-C., Mao, F., and Xue, B., J. Catal. Commun., 2016, vol. 79, p. 45. https://doi.org/10.1016/j.catcom.2016.03.004

    Article  CAS  Google Scholar 

  25. Wang, M., Ye, M., Iocozzia, J., Lin, C., and Lin, Z., J. Adv. Sci., 2016, vol. 3, p. 1600024. https://doi.org/10.1002/advs.201600024

    Article  CAS  Google Scholar 

  26. Liu, Q., Wang, Z., Chen, H., Wang, H.-Y., Song, H., Ye, J., and Weng, Y., ChemCatChem, 2020, vol. 12, p. 3838. https://doi.org/10.1002/cctc.202000280

    Article  CAS  Google Scholar 

  27. Zihrul, P., Hartung, I., Kirsch, S., Huebner, G., Hasché, F., and Gasteiger, H.A., J. Electrochem. Soc., 2016, vol. 163, p. F492. https://doi.org/10.1149/2.0561606jes

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (grants nos. 51572069 and 51772099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shen.

Ethics declarations

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, F., He, Q., Wu, S. et al. Bimetallic Ratio Strategy for Efficient Photocatalytic Hydrogen Production. Russ J Gen Chem 93, 2185–2191 (2023). https://doi.org/10.1134/S1070363223080273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223080273

Keywords:

Navigation