Skip to main content
Log in

(2E,2′E)-2,2′-(1,2,4-Thiadiazole-3,5-diyl)bis[3-arylacrylonitriles]: Synthesis and Antidote Activity Towards 2,4-D Herbicide

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Oxidation of (Е)-3-aryl-2-cyanothioacrylamides under the action of the Et2S(O)–HCl system leads to the formation of (2Е,2′E)-2,2′-(1,2,4-thiadiazole-3,5-diyl)bis[3-arylacrylonitriles] in 54–91% yields. Structure of the obtained compounds was confirmed by the two-dimensional NMR spectroscopy data. A plausible reaction mechanism was discussed. Two compounds showed a pronounced antidote effect against 2,4-D herbicide in a laboratory experiment on sunflower seedlings in the absence of growth-stimulating activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Kurzer, F., Adv. Heterocycl. Chem., 1965, vol. 5, p. 119. https://doi.org/10.1016/S0065-2725(08)60409-2

    Article  CAS  Google Scholar 

  2. Kurzer, F., Adv. Heterocycl. Chem., 1982, vol. 32, p. 285. https://doi.org/10.1016/S0065-2725(08)60656-X

    Article  CAS  Google Scholar 

  3. Castro, A., Castaño, T., Encinas, A., Porcal, W., and Gil, C., Bioorg. Med. Chem., 2006, vol. 14, no. 5, p. 1644. https://doi.org/10.1016/j.bmc.2005.10.012

    Article  CAS  Google Scholar 

  4. Tam, T.F., Leung-Toung, R., Li, W., Spino, M., and Karimian, K., Mini Rev. Med. Chem., 2005, vol. 5, no. 4, p. 367. https://doi.org/10.2174/1389557053544056

    Article  CAS  Google Scholar 

  5. Frija, L.M.T., Pombeiro, A.J.L., and Kopylovich, M.N., Eur. J. Org. Chem., 2017, vol. 2017, no. 19, p. 2670. https://doi.org/10.1002/ejoc.201601642

    Article  CAS  Google Scholar 

  6. Radzuhn, B. and Lyr, H., Pestic. Biochem. Physiol., 1984, vol. 22, no. 1, p. 14. https://doi.org/10.1016/0048-3575(84)90004-X

    Article  CAS  Google Scholar 

  7. Reregistration eligibility decision (RED) Etridiazole (Terrazole®) (2000) US EPA 738-R-00-019.

  8. Parsons, J., Patent US 3770754, 1973.

  9. Hagiwara, K., Ishimitsu, K., Hashimoto, S., and Shimoda, S., Patent GB 2124212A, 1984.

  10. Matthews, I.R. and Bacon, D.P., Patent WO 9505368, 1995.

  11. Ihara, H. and Sakamoto, N., Patent WO 2004041798, 2004.

  12. Davison, E.K. and Sperry, J., Org. Chem. Front., 2016, vol. 3, no. 1, p. 38. https://doi.org/10.1039/c5qo00367a

    Article  CAS  Google Scholar 

  13. Casertano, M., Imperatore, C., Luciano, P., Aiello, A., Putra, M.Y., Gimmelli, R., Ruberti, G., and Menna, M., Marine Drugs, 2019, vol. 17, no. 5, p. 278. https://doi.org/10.3390/md17050278

    Article  CAS  Google Scholar 

  14. Anstis, D.G., Lindsay, A.C., Söhnel, T., and Sperry, J., J. Nat. Prod., 2020, vol. 83, no. 5, p. 1721. https://doi.org/10.1021/acs.jnatprod.0c00166

    Article  CAS  Google Scholar 

  15. Iizawa, Y., Okonogi, K., Hayashi, R., Iwahi, T., Yamazaki, T., and Imada, A., Antimicrob. Agents Chemother., 1993, vol. 37, no. 1, p. 100. https://doi.org/10.1128/AAC.37.1.100

    Article  CAS  Google Scholar 

  16. Makhaeva, G.F., Kovaleva, N.V., Boltneva, N.P., Lushchekina, S.V., Rudakova, E.V., Stupina, T.S., Terentiev, A.A., Serkov, I.V., Proshin, A.N., Radchenko, E.V., Palyulin, V.A., Bachurin, S.O., and Richardson, R.J., Bioorg. Chem., 2020, vol. 94, Paper no. 103387. https://doi.org/10.1016/j.bioorg.2019.103387

  17. Kovaleva, N., Proshin, A., Rudakova, E., Boltneva, N., Serkov, I., and Makhaeva, G., Biomed. Chem. Res. Meth., 2018, vol. 1, no. 3, p. e00027. https://doi.org/10.18097/BMCRM00027

  18. Makhaeva, G.F., Rudakova, E.V., Kovaleva, N.V., Lushchekina, S.V., Boltneva, N.P., Proshin, A.N., Shchegolkov, E.V., Burgart, Ya.V., and Saloutin, V.I., Russ. Chem. Bull., 2019, vol. 68, no. 5, p. 967. https://doi.org/10.1007/s11172-019-2507-2

    Article  CAS  Google Scholar 

  19. Makhaeva, G.F., Grigoriev, V.V., Proshin, A.N., Kovaleva, N.V., Rudakova, E.V., Boltneva, N.P., Serkov, I.V., and Bachurin, S.O., Doklady. Biochem. Biophys., 2017, vol. 477, p. 405. https://doi.org/10.1134/S1607672917060163

    Article  CAS  Google Scholar 

  20. Pragathi, Y.J., Sreenivasulu, R., Veronica, D., and Raju, R.R., Arab. J. Sci. Eng., 2021, vol. 46, no. 1, p. 225. https://doi.org/10.1007/s13369-020-04626-z

    Article  CAS  Google Scholar 

  21. Shahinshavali, S., Sreenivasulu, R., Guttikonda, V.R., Kolli, D., and Rao, M.V.B., Russ. J. Gen. Chem., 2019, vol. 89, no. 2, p. 324. https://doi.org/10.1134/S1070363219020257

    Article  CAS  Google Scholar 

  22. Boulhaoua, M., Pasinszki, T., Torvisco, A., Oláh-Szabó, R., Bősze, S., and Csámpai, A., RSC Adv., vol. 11, no. 46, p. 28685. https://doi.org/10.1039/d1ra05095h

  23. Devi, E.R., Sreenivasulu, R., Rao, M.V., Rao, K.P., Nadh, R.V., and Sireesha, M., Russ. J. Gen. Chem., 2021, vol. 91, no. 6, p. 1105. https://doi.org/10.1134/S1070363221060189

    Article  CAS  Google Scholar 

  24. Proshin, A.N., Trofimova, T.P., Zefirova, O.N., Zhirkina, I.V., Skvortsov, D.A., and Bachurin, S.O., Russ. Chem. Bull., 2021, vol. 70, no. 3, p. 510. https://doi.org/10.1007/s11172-021-3116-4

    Article  CAS  Google Scholar 

  25. Proshin, A.N., Serkov, I.V., Petrova, L.N., and Bachurin, S.O., Russ. Chem. Bull., 2014, vol. 63, no. 5, p. 1148. https://doi.org/10.1007/s11172-014-0563-1

    Article  CAS  Google Scholar 

  26. Grigoriev, V.V., Makhaeva, G.F., Proshin, A.N., Kovaleva, N.V., Rudakova, E.V., Boltneva, N.P., Gabrel’yan, A.V., Lednev, B.V., and Bachurin, S.O., Russ. Chem. Bull., 2017, vol. 66, no. 7, p. 1308. https://doi.org/10.1007/s11172-017-1890-9

    Article  CAS  Google Scholar 

  27. Makhaeva, G.F., Proshin, A.N., Boltneva, N.P., Rudakova, E.V., Kovaleva, N.V., Serebryakova, O.G., Serkov, I.V., and Bachurin, S.O., Russ. Chem. Bull., 2016, vol. 65, no. 6, p. 1586. https://doi.org/10.1007/s11172-016-1486-9

    Article  CAS  Google Scholar 

  28. Surov, A.O., Voronin, A.P., Vasilev, N.A., Ilyukhin, A.B., and Perlovich, G.L., New J. Chem., 2021, vol. 45, no. 6, p. 3034. https://doi.org/10.1039/D0NJ05644H

    Article  CAS  Google Scholar 

  29. Volkova, T.V., Terekhova, I.V., Silyukov, O.I., Proshin, A.N., Bauer-Brandl, A., and Perlovich, G.L., Med. Chem. Commun., 2017, vol. 8, p. 162. https://doi.org/10.1039/C6MD00545D

    Article  CAS  Google Scholar 

  30. Leung-Toung, R., Wodzinska, J., Li, W., Lowrie, J., Kukreja, R., Desilets, D., Karimian, K., and Tam, T.F., Bioorg. Med. Chem., 2003, vol. 11, no. 24, p. 5529. https://doi.org/10.1016/j.bmc.2003.09.040

    Article  CAS  Google Scholar 

  31. Pomeislová, A., Otmar, M., Rubešová, P., Benýšek, J., Matoušová, M., Mertlíková-Kaiserová, H., Pohl, R., Poštová Slavětínská, L., Pomeisl, K., and Krečmerová, M., Bioorg. Med. Chem., 2021, vol. 32, paper no. 115998. https://doi.org/10.1016/j.bmc.2021.115998

  32. John, G.W., Létienne, R., Le Grand, B., Pignier, C., Vacher, B., Patoiseau, J.F., Colpaert, F.C., and Coulombe, A., Cardiovasc. Drug Rev., 2004, vol. 22, no. 1, p. 17. https://doi.org/10.1111/j.1527-3466.2004.tb00129.x

    Article  CAS  Google Scholar 

  33. Shetnev, A., Tarasenko, M., Kotlyarova, V., Baykov, S., Geyl, K., Kasatkina, S., Sibinčić, N., Sharoyko, V., Rogacheva, E.V., and Kraeva, L.A., Mol. Divers., 2022. https://doi.org/10.1007/s11030-022-10445-1

  34. Danilova, E.A., Melenchuk, T.V., Trukhina, O.N., and Islyaikin, M.K., Macroheterocycles, 2010, vol. 3, no. 1, p. 68. https://doi.org/10.6060/mhc2010.1.68

    Article  CAS  Google Scholar 

  35. Suvorova, Y.V., Kustova, T.V., Danilova, E.A., and Mileeva, M.N., Macroheterocycles, 2020, vol. 13, no. 3, p. 234. https://doi.org/10.6060/mhc200494s

    Article  CAS  Google Scholar 

  36. Guo, R., Zhang, W., Zhang, Q., Lv, X., and Wang, L., Front. Optoelectron., 2018, vol. 11, no. 4, p. 375. https://doi.org/10.1007/s12200-018-0855-4

    Article  Google Scholar 

  37. Bogdanowicz, K.A., Jewłoszewicz, B., Iwan, A., Dysz, K., Przybyl, W., Januszko, A., Marzec, M., Cichy, K., Świerczek, K., Kavan, L., Zukalová, M., Nadazdy, V., Subair, R., Majkova, E., Micusik, M., Omastova, M., Özeren, M.D., Kamarás, K., Heo, D.Y., and Kim, S.Y., Materials, 2020, vol. 13, no. 11, Paper 2440. https://doi.org/10.3390/ma13112440

  38. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2014, vol. 50, no. 4, p. 557. https://doi.org/10.1007/s10593-014-1507-2

    Article  CAS  Google Scholar 

  39. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 4, p. 636. https://doi.org/10.1007/s10593-013-1291-4

    Article  CAS  Google Scholar 

  40. Dakhno, P.G., Zhilyaev, D.M., Dotsenko, V.V., Strelkov, V.D., Krapivin, G.D., Aksenov, N.A., Aksenova, I.V., and Likhovid, N.G., Russ. J. Gen. Chem., 2022, vol. 92, no. 9, p. 1667. https://doi.org/10.1134/S1070363222090080

    Article  Google Scholar 

  41. Dotsenko, V.V., Krivokolysko, S.G., Shishkina, S.V., and Shishkin, O.V., Russ. Chem. Bull., 2012, vol. 61, no. 11, p. 2082. https://doi.org/10.1007/s11172-012-0291-3

    Article  CAS  Google Scholar 

  42. Grinsteins, V. and Serina, L., Latvijas PSR Zinatnu Akad. Vestis Kim. Ser., no. 4, p. 469; C. A., 1964, vol. 60, 5391h.

  43. Brunskill, J.S.A., De, A., and Ewing, D.F., J. Chem. Soc., Perkin Trans. 1, 1978, vol. 6, p. 629. https://doi.org/10.1039/p19780000629

    Article  Google Scholar 

  44. Bloxham, J. and Dell, C.P., J. Chem. Soc., Perkin Trans. 1, 1994, no. 8, p. 989. https://doi.org/10.1039/P19940000989

    Article  Google Scholar 

  45. Litvinov, V.P., Russ. Chem. Rev., 1999, vol. 68, no. 9, p. 737. https://doi.org/10.1070/RC1999v068n09ABEH000533

    Article  CAS  Google Scholar 

  46. Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760

    Article  CAS  Google Scholar 

  47. Bibik, I.V., Bibik, E.Yu., Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., and Ovcharov, S.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 2, p. 154. https://doi.org/10.1134/S107036322102002X

    Article  CAS  Google Scholar 

  48. Pakholka, N.A., Abramenko, V.L., Dotsenko, V.V., Aksenov, N.A., Aksenova, I.V., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 3, p. 357. https://doi.org/10.1134/S1070363221030038

    Article  CAS  Google Scholar 

  49. Pakholka, N.A., Dotsenko, V.V., Krivokolysko, B.S., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., Ovcharov, S.N., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 4, p. 606. https://doi.org/10.1134/S1070363221040058

    Article  CAS  Google Scholar 

  50. Dotsenko, V.V., Bespalov, A.V., Vashurin, A.S., Aksenov, N.A., Aksenova, I.V., Chigorina, E.A., and Krivokolysko, S.G., ACS Omega, 2021, vol. 6, no. 48, p. 32571. https://doi.org/10.1021/acsomega.1c04141

    Article  CAS  Google Scholar 

  51. Krivokolysko, D.S., Dotsenko, V.V., Bibik, E.Yu., Myazina, A.V., Krivokolysko, S.G., Vasilin, V.K., Pankov, A.A., Aksenov, N.A., and Aksenova, I.V., Russ. J. Gen. Chem., 2021, vol. 91, no. 12, p. 2588. https://doi.org/10.1134/S1070363221120306

    Article  CAS  Google Scholar 

  52. Dotsenko, V.V., Chigorina, E.A., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2020, vol. 90, no. 8, p. 1411. https://doi.org/10.1134/S107036322008006X

    Article  CAS  Google Scholar 

  53. Takikawa, Y., Shimada, K., Sato, K., Sato, S., and Takizawa, S., Bull. Chem. Soc. Japan, 1985, vol. 58, no. 3, p. 995. https://doi.org/10.1246/bcsj.58.995

    Article  CAS  Google Scholar 

  54. Forlani, L., Lugli, A., Boga, C., Corradi, A.B., and Sgarabotto, P., J. Heterocycl. Chem., 2000, vol. 37, no. 1, p. 63. https://doi.org/10.1002/jhet.5570370110

    Article  CAS  Google Scholar 

  55. Forlani, L. and Boga, C., J. Chem. Soc., Perkin Trans. 2, 2002, no. 4, p. 768. https://doi.org/10.1039/B111538N

    Article  Google Scholar 

  56. Boga, C., Forlani, L., Silvestroni, C., Corradi, A.B., and Sgarabotto, P., J. Chem. Soc. Perkin Trans. 1, 1999, p. 1363. https://doi.org/10.1039/A809086F

  57. Liedholm, B., J. Chem. Soc. Perkin Trans. 1, 1992, no. 17, p. 2235. https://doi.org/10.1039/P19920002235

    Article  Google Scholar 

  58. Zhou, J., Tang, D., and Bian, M., Synlett, 2020, vol. 31, no. 14, p. 1430. https://doi.org/10.1055/s-0040-1707169

    Article  CAS  Google Scholar 

  59. Tanaka, S., Yasuda, M., and Baba, A., J. Org. Chem., 2006, vol. 71, no. 2, p. 800. https://doi.org/10.1021/jo052004y

    Article  CAS  Google Scholar 

  60. Liu, J., Tang, Y., and Fu, X., Starch-Stärke, 2015, vol. 67, nos. 9–10, p. 765. https://doi.org/10.1002/star.201400235

    Article  CAS  Google Scholar 

  61. Chaban, V.V., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 36, p. 23754. https://doi.org/10.1039/C8CP04012E

    Article  CAS  Google Scholar 

  62. Chaban, V.V. and Andreeva, N.A., J. Mol. Liq., 2022, vol. 349, paper no. 118110. https://doi.org/10.1016/j.molliq.2021.118110

  63. Chaban, V.V., Comput. Theor. Chem., 2022, vol. 1211, Paper 113683. https://doi.org/10.1016/j.comptc.2022.113683

  64. Zykova, A.R., Sharutin, V.V., Sharutina, O.K., and Senchurin, V.S., Russ. J. Gen. Chem., 2020, vol. 90, p. 1483. https://doi.org/10.1134/S1070363220080150

    Article  CAS  Google Scholar 

  65. Tkacheva, A.R., Sharutin, V.V., and Sharutina, O.K., Russ. J. Gen. Chem., 2019, vol. 89, no. 2, p. 277. https://doi.org/10.1134/S107036321902018X

    Article  CAS  Google Scholar 

  66. Sharutin, V.V., Sharutina, O.K., and Senchurin, V.S., Russ. J. Gen. Chem., 2022, vol. 92, no. 7, p. 1309. https://doi.org/10.1134/S1070363222070209

    Article  CAS  Google Scholar 

  67. Tkacheva, A.R. and Sharutin, V.V., Vestn. YuUrGU, Ser. Khimiya, 2018, vol. 10, no. 3, p. 59. https://doi.org/10.14529/chem180307

    Article  Google Scholar 

  68. Tkacheva, A.R., Vestn. YuUrGU, Ser. Khim., 2019, vol. 11, no. 1, p. 25. https://doi.org/10.14529/chem190103

    Article  Google Scholar 

  69. Yarygina, D.M., BAtalov, A.E., and Senchurin, V.S., Vestn. YuUrGU, Ser. Khim., 2018, vol. 10, no. 3, p. 51. https://doi.org/10.14529/chem180306

    Article  Google Scholar 

  70. Chu, L., Yue, X., and Qing, F.L., Org. Lett., 2010, vol. 12, no. 7, p. 1644. https://doi.org/10.1021/ol100449c

    Article  CAS  Google Scholar 

  71. Madesclaire, M., Tetrahedron, 1988, vol. 44, no. 21, p. 6537. https://doi.org/10.1016/S0040-4020(01)90096-1

    Article  CAS  Google Scholar 

  72. Liebscher, J. and Hartmann, H., Lieb. Ann., 1977, no. 6, p. 1005. https://doi.org/10.1002/jlac.197719770614

    Article  Google Scholar 

  73. Pavlik, J.W., Changtong, C., and Tantayanon, S., J. Heterocycl. Chem., 2002, vol. 39, no. 1, p. 237. https://doi.org/10.1002/jhet.5570390135

    Article  CAS  Google Scholar 

  74. Shapovalov, A.A., Zhirmunskaya, N.M., Zubkova, N.F., Ovsyannikova, T.V., and Gruzinskaya, N.A., Metodicheskie rekomendatsii po provedeniyu laboratornykh ispytanii sinteticheskikh regulyatorov rosta rastenii (Guidelines for Laboratory Testing of Synthetic Plant Growth Regulators), Cherkasy: NIITEKHIM, 1990.

  75. Strelkov, V.D., Dyadyuchenko, L.V., and Dmitrieva, I.G., Sintez novykh gerbitsidnykh antidotov dlya podsolnechnika (Synthesis of New Herbicidal Antidotes for Sunflower), Krasnodar: Prosveshcheniye-Yug, 2014, p. 79.

  76. Dotsenko, V.V., Krivokolysko, S.G., Polovinko, V.V., and Litvinov, V.P., Chem. Heterocycl. Compd., 2012, vol. 48, no. 2, p. 309. https://doi.org/10.1007/s10593-012-0991-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Scientific and Educational Center “Diagnostics of the Structure and Properties of Nanomaterials” and the Center for Collective Use “Ecological Analytical Center” of the Kuban State University.

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (project no. 0795-2020-0031) and the North Caucasus Federal University (interdisciplinary project “Synthesis and antidote activity against the herbicide 2,4-D heterocyclic derivatives of methylene active nitriles”) within the framework of the Strategic Academic Leadership Program “Priority 2030”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

No conflict of interest was declared by the authors.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhno, P.G., Dotsenko, V.V., Strelkov, V.D. et al. (2E,2′E)-2,2′-(1,2,4-Thiadiazole-3,5-diyl)bis[3-arylacrylonitriles]: Synthesis and Antidote Activity Towards 2,4-D Herbicide. Russ J Gen Chem 92, 2822–2831 (2022). https://doi.org/10.1134/S1070363222120337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222120337

Keywords:

Navigation