Skip to main content
Log in

Electrochemical Oxidation of 3-Aryl-2-cyanothioacrylamides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical oxidation of (Е)-3-aryl-2-cyanoprop-2-enethioamides in a undivided cell in the presence of KBr in an aqueous or aqueous-organic medium has led to the formation of (2Е,2′E)-2,2′-(1,2,4-thiadiazole-3,5-diyl)bis[3-arylacrylonitriles] in 37–76% yield. A plausible reaction mechanism has been discussed. In laboratory experiments, (2E,2′E)-2,2′-(1,2,4-thiadiazol-3,5-diyl)bis[3-(4-methoxyphenyl)acrylonitrile] has revealed pronounced antidote effect against herbicide 2,4-D on sunflower seedlings and no pronounced growth-regulating properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Jones, A.M. and Banks, C.E., Beilstein J. Org. Chem., 2014, vol. 10, no. 1, p. 3056. https://doi.org/10.3762/bjoc.10.323

    Article  CAS  Google Scholar 

  2. Dudkina, Yu.B., Gryaznova, T.V., Sinyashin, O.G., and Budnikova, Yu.H., Russ. Chem. Bull., 2015, vol. 64, no. 8, p. 1713. https://doi.org/10.1007/s11172-015-1067-3

    Article  CAS  Google Scholar 

  3. Elinson, M.N., Dorofeeva, E.O., Vereshchagin, A.N., and Nikishin, G.I., Russ. Chem. Rev., 2015, vol. 84, no. 5, p. 485. https://doi.org/10.1070/RCR4465

    Article  CAS  Google Scholar 

  4. Yan, M., Kawamata, Y., and Baran, P.S., Chem. Rev., 2017, vol. 117, no. 21, p. 13230. https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  Google Scholar 

  5. Waldvogel, S.R., Lips, S., Selt, M., Riehl, B., and Kampf, C.J., Chem. Rev., 2018, vol. 118, no. 14, p. 6706. https://doi.org/10.1021/acs.chemrev.8b00233

    Article  CAS  Google Scholar 

  6. Möhle, S., Zirbes, M., Rodrigo, E., Gieshoff, T., Wiebe, A., and Waldvogel, S.R., Angew. Chem. Int. Ed., 2018, vol. 57, no. 21, p. 6018. https://doi.org/10.1002/anie.201712732

    Article  CAS  Google Scholar 

  7. Moeller, K.D., Chem. Rev., 2018, vol. 118, no. 9, p. 4817. https://doi.org/10.1021/acs.chemrev.7b00656

    Article  CAS  Google Scholar 

  8. Kärkäs, M.D., Chem. Soc. Rev., 2018, vol. 47, no. 15, p. 5786. https://doi.org/10.1039/C7CS00619E

    Article  Google Scholar 

  9. Ye, Z. and Zhang, F., Chin. J. Chem., 2019, vol. 37, no. 5, p. 513. https://doi.org/10.1002/cjoc.201900049

    Article  CAS  Google Scholar 

  10. Tang, H.-T., Jia, J.-S., and Pan, Y.-M., Org. Biomol. Chem., 2020, vol. 18, no. 28, p. 5315. https://doi.org/10.1039/D0OB01008A

    Article  CAS  Google Scholar 

  11. Yamamoto, K., Kuriyama, M., and Onomura, O., Chem. Rec., 2021, vol. 21, no. 9, p. 2239. https://doi.org/10.1002/tcr.202100031

    Article  CAS  Google Scholar 

  12. Shi, S.H., Liang, Y., and Jiao, N., Chem. Rev., 2021, vol. 121, no. 1, p. 485. https://doi.org/10.1021/acs.chemrev.0c00335

    Article  CAS  Google Scholar 

  13. Kushkhov, Kh.B. and Tlenkopachev, M.R., Russ. J. Gen. Chem., 2021, vol. 91. № 2, p. 251. https://doi.org/10.1134/S1070363221020146

    Article  CAS  Google Scholar 

  14. Zou, Z., Zhang, W., Wang, Y., and Pan, Y., Org. Chem. Front., 2021, vol. 8, no. 11, p. 2786. https://doi.org/10.1039/D1QO00054C

    Article  CAS  Google Scholar 

  15. Hou, Z.W., Xu, H.C., and Wang, L., Curr. Opin. Electrochem., 2022, vol. 34. paper N 100988. https://doi.org/10.1016/j.coelec.2022.100988

  16. Du, Z., Qi, Q., Gao, W., Ma, L., Liu, Z., Wang, R., and Chen, J., Chem. Rec., 2022, vol. 22, no. 1, p. e202100178. https://doi.org/10.1002/tcr.202100178

  17. Hurd, R.N. and DeLaMater, G., Chem. Rev., 1961, vol. 61, no. 1, p. 45. https://doi.org/10.1021/cr60209a003

    Article  CAS  Google Scholar 

  18. Petrov, K.A. and Andreev, L.N., Russ. Chem. Rev., 1971, vol. 40, no. 6, p. 505. https://doi.org/10.1070/RC1971v040n06ABEH001934

    Article  Google Scholar 

  19. Chemistry of Thioamides, Murai. T., Ed., Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-7828-7

  20. Jagodziński, T.S., Chem. Rev., 2003, vol. 103, no. 1, p. 197. https://doi.org/10.1021/cr0200015

    Article  CAS  Google Scholar 

  21. Mahanta, N., Szantai-Kis, D.M., Petersson, E.J., and Mitchell, D.A., ACS Chem. Biol., 2019, vol. 14, no. 2, p. 142. https://doi.org/10.1021/acschembio.8b01022

    Article  CAS  Google Scholar 

  22. Corsaro, A. and Pistara, V., Tetrahedron, 1998, vol. 54, no. 50, p. 15027. https://doi.org/10.1016/S0040-4020(98)00880-1

    Article  CAS  Google Scholar 

  23. Sahu, S., Rani Sahoo, P., Patel, S., and Mishra, B.K., J. Sulfur Chem., 2011, vol. 32, no. 2, p. 171. https://doi.org/10.1080/17415993.2010.550294

    Article  CAS  Google Scholar 

  24. Castro, A., Castaño, T., Encinas, A., Porcal, W., and Gil, C., Bioorg. Med. Chem., 2006, vol. 14, no. 5, p. 1644. https://doi.org/10.1016/j.bmc.2005.10.012

    Article  CAS  Google Scholar 

  25. Tanase, Gh., David, I.G., Cercasov, C., Iorgulescu, E.E., Galie, L., and Radu, G.L., Rom. Biotechnol. Lett., 2001, vol. 6, no. 2, p. 81

    Google Scholar 

  26. Matsuki, T., Hu, N.X., Aso, Y., Otsubo, T., and Ogura, F., Bull. Chem. Soc. Jpn., 1988, vol. 61, no. 6, p. 2117. https://doi.org/10.1246/bcsj.61.2117

    Article  CAS  Google Scholar 

  27. Breising, V.M., Gieshoff, T., Kehl, A., Kilian, V., Schollmeyer, D., and Waldvogel, S.R., Org. Lett., 2018, vol. 20, no. 21, p. 6785. https://doi.org/10.1021/acs.orglett.8b02904

  28. Laćan, M., Jakopčić, K., Rogić, V., Damoni, Sh., Rogić, O., and Tabaković, I., Synth. Commun., 1974, vol. 4, no. 4, p. 219. https://doi.org/10.1080/00397917408062076

    Article  Google Scholar 

  29. Tabaković, I., Trkovnik, M., Batušić, M., and Tabaković, K., Synthesis, 1979, vol. 1979, no. 8, p. 590. https://doi.org/10.1055/s-1979-28768

    Article  Google Scholar 

  30. Qian, X.-Y., Li, S.-Q., Song, J., and Xu, H.-C., ACS Catal., 2017, vol. 7, no. 4, p. 2730. https://doi.org/10.1021/acscatal.7b00426

    Article  CAS  Google Scholar 

  31. Wang, P., Tang, S., and Lei, A., Green Chem., 2017, vol. 19, p. 2092. https://doi.org/10.1039/C7GC00468K

    Article  CAS  Google Scholar 

  32. Folgueiras-Amador, A.A., Qian, X.-Y., Xu, H.-C., and Wirth, T., Chem. Eur. J., 2018, vol. 24, no. 2, p. 487. https://doi.org/10.1002/chem.201705016

    Article  CAS  Google Scholar 

  33. Wang, Z.-Q., Meng, X.-J., Li, Q.-Y., Tang, H.-T., Wang, H.-S., and Pan, Y.-M., Adv. Synth. Catal., 2018, vol. 360, no. 21, p. 4043. https://doi.org/10.1002/adsc.201800871

    Article  CAS  Google Scholar 

  34. Rolfs, A., Brosig, H., and Liebscher, J., J. Prakt. Chem., 1995, vol. 337, no. 1, p. 310. https://doi.org/10.1002/prac.19953370163

    Article  CAS  Google Scholar 

  35. Bǎnicǎ, F.G., Florea, M., and Diacu, E., Electroanalysis, 1990, vol. 2, no. 1, p. 43. https://doi.org/10.1002/elan.1140020109

    Article  Google Scholar 

  36. Abdel-Galil, F.M., Sherif, S.M., and Elnagdi, M.H., Heterocycles, 1986, vol. 24, no. 7, p. 2023. https://doi.org/10.3987/R-1986-07-2023

    Article  CAS  Google Scholar 

  37. Litvinov, V.P., Russ. Chem. Rev., 1999, vol. 68, no. 9, p. 737. https://doi.org/10.1070/RC1999v068n09ABEH000533

    Article  CAS  Google Scholar 

  38. Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760

    Article  CAS  Google Scholar 

  39. Magerramov, A.M., Shikhaliev, N.G., Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., α-Tsianotioacetamid (α-Cyanothioacetamide), Moscow: Tekhnosfera, 2018.

  40. Grinsteins, V. and Serina, L., Latvijas PSR Zinatnu Akad. Vestis Kim. Ser, no. 4, p. 469, Chem. Abstr., 1964, vol. 60, 5391h.

  41. Brunskill, J.S.A., De, A., and Ewing, D.F., J. Chem. Soc. Perkin Trans. 1, 1978, vol. 6, p. 629. https://doi.org/10.1039/p19780000629

    Article  Google Scholar 

  42. Bloxham, J. and Dell, C.P., J. Chem. Soc. Perkin Trans. 1, 1994, no. 8, p. 989. https://doi.org/10.1039/P19940000989

    Article  Google Scholar 

  43. Buryi, D.S., Dotsenko, V.V., Aksenov, N.A., Aksenova, I.V., Krivokolysko, S.G., and Dyadyuchenko, L.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 8, p. 1575. https://doi.org/10.1134/S1070363219080061

    Article  CAS  Google Scholar 

  44. Buryi, D.S., Dotsenko, V.V., Levashov, A.S., Lukina, D.Yu., Strelkov, V.D., Aksenov, N.A., Aksenova, I.V., and Netreba, E.E., Russ. J. Gen. Chem., 2019, vol. 89, no. 5, p. 886. https://doi.org/10.1134/S1070363219050050

    Article  CAS  Google Scholar 

  45. Bibik, I.V., Bibik, E.Yu., Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., and Ovcharov, S.N., Russ. J. Gen. Chem., 2021, vol. 91, no. 2, p. 154. https://doi.org/10.1134/S107036322102002X

    Article  CAS  Google Scholar 

  46. Pakholka, N.A., Abramenko, V.L., Dotsenko, V.V., Aksenov, N.A., Aksenova, I.V., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 3, p. 357. https://doi.org/10.1134/S1070363221030038

    Article  CAS  Google Scholar 

  47. Pakholka, N.A., Dotsenko, V.V., Krivokolysko, B.S., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., Shcherbakov, S.V., Ovcharov, S.N., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 4, p. 606. https://doi.org/10.1134/S1070363221040058

    Article  CAS  Google Scholar 

  48. Dotsenko, V.V., Bespalov, A.V., Vashurin, A.S., Aksenov, N.A., Aksenova, I.V., Chigorina, E.A., and Krivokolysko, S.G., ACS Omega, 2021, vol. 6, no. 48, p. 32571. https://doi.org/10.1021/acsomega.1c04141

    Article  CAS  Google Scholar 

  49. Krivokolysko, D.S., Dotsenko, V.V., Bibik, E.Yu., Myazina, A.V., Krivokolysko, S.G., Vasilin, V.K., Pankov, A.A., Aksenov, N.A., and Aksenova, I.V., Russ. J. Gen. Chem., 2021, vol. 91, no. 12, p. 2588. https://doi.org/10.1134/S1070363221120306

    Article  CAS  Google Scholar 

  50. Dotsenko, V.V., Chigorina, E.A., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2020, vol. 90, no. 8, p. 1411. https://doi.org/10.1134/S107036322008006X

    Article  CAS  Google Scholar 

  51. Dotsenko, V.V., Krivokolysko, S.G., Shishkina, S.V., and Shishkin, O.V., Russ. Chem. Bull., 2012, vol. 61, no. 11, p. 2082. https://doi.org/10.1007/s11172-012-0291-3

    Article  CAS  Google Scholar 

  52. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2014, vol. 50, no. 4, p. 557. https://doi.org/10.1007/s10593-014-1507-2

    Article  CAS  Google Scholar 

  53. Dotsenko, V.V. and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 4, p. 636. https://doi.org/10.1007/s10593-013-1291-4

    Article  CAS  Google Scholar 

  54. Dakhno, P.G., Zhilyaev, D.M., Dotsenko, V.V., Strelkov, V.D., Krapivin, G.D., Aksenov, N.A., Aksenova, I.V., and Likhovid, N.G., Russ. J. Gen. Chem., 2022, vol. 92, no. 9, p. 1667. https://doi.org/10.1134/S1070363222090080

    Article  Google Scholar 

  55. Tam, T.F., Leung-Toung, R., Li, W., Spino, M., and Karimian, K., Mini Rev. Med. Chem., 2005, vol. 5, no. 4, p. 367. https://doi.org/10.2174/1389557053544056

    Article  CAS  Google Scholar 

  56. Frija, L.M.T., Pombeiro, A.J.L., and Kopylovich, M.N., Eur. J. Org. Chem., 2017, vol. 2017, no. 19, p. 2670. https://doi.org/10.1002/ejoc.201601642

    Article  CAS  Google Scholar 

  57. Danilova, E.A., Melenchuk, T.V., Trukhina, O.N., and Islyaikin, M.K., Macroheterocycles, 2010, vol. 3, no. 1, p. 68. https://doi.org/10.6060/mhc2010.1.68

    Article  CAS  Google Scholar 

  58. Suvorova, Y.V., Kustova, T.V., Danilova, E.A., and Mileeva, M.N., Macroheterocycles, 2020, vol. 13, no. 3, p. 234. https://doi.org/10.6060/mhc200494s

    Article  CAS  Google Scholar 

  59. Surov, A.O., Voronin, A.P., Vasilev, N.A., Ilyukhin, A.B., and Perlovich, G.L., New J. Chem., 2021, vol. 45, no. 6, p. 3034. https://doi.org/10.1039/D0NJ05644H

    Article  CAS  Google Scholar 

  60. Volkova, T.V., Terekhova, I.V., Silyukov, O.I., Proshin, A.N., Bauer-Brandl, A., and Perlovich, G.L., Med. Chem. Comm., 2017, vol. 8, p. 162. https://doi.org/10.1039/C6MD00545D

    Article  CAS  Google Scholar 

  61. Leung-Toung, R., Wodzinska, J., Li, W., Lowrie, J., Kukreja, R., Desilets, D., Karimian, K., and Tam, T.F., Bioorg. Med. Chem., 2003, vol. 11, no. 24, p. 5529. https://doi.org/10.1016/j.bmc.2003.09.040

    Article  CAS  Google Scholar 

  62. Pomeislová, A., Otmar, M., Rubešová, P., Benýšek, J., Matoušová, M., Mertlíková-Kaiserová, H., Pohl, R., Poštová Slavětínská, L., Pomeisl, K., and Krečmerová, M., Bioorg. Med. Chem., 2021, vol. 32, p. 115998. https://doi.org/10.1016/j.bmc.2021.115998

    Article  CAS  Google Scholar 

  63. John, G.W., Létienne, R., Le Grand, B., Pignier, C., Vacher, B., Patoiseau, J.F., Colpaert, F.C., and Coulombe, A., Cardiovasc. Drug Rev., 2004, vol. 22, no. 1, p. 17. https://doi.org/10.1111/j.1527-3466.2004.tb00129.x

  64. Shetnev, A., Tarasenko, M., Kotlyarova, V., Baykov, S., Geyl, K., Kasatkina, S., Sibinčić, N., Sharoyko, V., Rogacheva, E.V., and Kraeva, L.A., Mol. Divers., 2022. https://doi.org/10.1007/s11030-022-10445-1

  65. Makhaeva, G.F., Kovaleva, N.V., Boltneva, N.P., Lushchekina, S.V., Rudakova, E.V., Stupina, T.S., Terentiev, A.A., Serkov, I.V., Proshin, A.N., Radchenko, E.V., Palyulin, V.A., Bachurin, S.O., and Richardson, R.J., Bioorg. Chem., 2020, vol. 94, p. 103387. https://doi.org/10.1016/j.bioorg.2019.103387

    Article  CAS  Google Scholar 

  66. Pragathi, Y.J., Sreenivasulu, R., Veronica, D., and Raju, R.R., Arab. J. Sci. Eng., 2021, vol. 46, no. 1, p. 225. https://doi.org/10.1007/s13369-020-04626-z

    Article  CAS  Google Scholar 

  67. Oyebamiji, A.K., Akintelu, S.A., Amao, O.P., Kaka, M.O., Morakinyo, A.E., Amao, F.A., and Semire, B., Data Brief., 2021, vol. 37, p. 107234. https://doi.org/10.1016/j.dib.2021.107234

    Article  CAS  Google Scholar 

  68. Boulhaoua, M., Pasinszki, T., Torvisco, A., OláhSzabó, R., Bősze, S., and Csámpai, A., RSC Adv., 2021, vol. 11, no. 46, p. 28685. https://doi.org/10.1039/d1ra05095h

    Article  CAS  Google Scholar 

  69. Kumar, R., Kumar, A., Ram, S., Angeli, A., Bonardi, A., Nocentini, A., Gratteri, P., Supuran, C.T., and Sharma, P.K., Arch. Pharm., 2022, vol. 355, no. 1, p. e2100241. https://doi.org/10.1002/ardp.202100241

  70. Bogdanowicz, K.A., Jewłoszewicz, B., Iwan, A., Dysz, K., Przybyl, W., Januszko, A., Marzec, M., Cichy, K., Świerczek, K., Kavan, L., Zukalová, M., Nadazdy, V., Subair, R., Majkova, E., Micusik, M., Omastova, M., Özeren, M.D., Kamarás, K., Heo, D.Y., and Kim, S.Y., Materials, 2020, vol. 13, no. 11, p. 2440. https://doi.org/10.3390/ma13112440

    Article  CAS  Google Scholar 

  71. Guo, R., Zhang, W., Zhang, Q., Lv, X., and Wang, L., Front. Optoelectron., 2018, vol. 11, no. 4, p. 375. https://doi.org/10.1007/s12200-018-0855-4

    Article  Google Scholar 

  72. Radzuhn, B. and Lyr, H., Pestic. Biochem. Physiol., 1984, vol. 22, no. 1, p. 14. https://doi.org/10.1016/0048-3575(84)90004-X

    Article  CAS  Google Scholar 

  73. Reregistration eligibility decision (RED) Etridiazole (Terrazole®) (2000) US EPA 738-R-00-019: 1-124. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.4844&rep=rep1&type=pdf

  74. Liebscher, J. and Hartmann, H., Lieb. Ann. Chem., 1977, vol. 1977, no. 6, p. 1005. https://doi.org/10.1002/jlac.197719770614

    Article  Google Scholar 

  75. Parsons, J., Patent US 3770754, 1973.

  76. Hagiwara, K., Ishimitsu, K., Hashimoto, S., and Shimoda, S., Patent GB 2124212A, 1984.

  77. Matthews, I.R. and Bacon, D.P., Patent WO 9505368, 1995.

  78. Ihara, H. and Sakamoto, N., Patent WO 2004041798, 2004.

  79. Shapovalov, A.A., Zhirmunskaya, N.M., Zubkova, N.F., Ovsyannikova, T.V., and Gruzinskaya, N.A., Metodicheskie rekomendatsii po provedeniyu laboratornykh ispytanii sinteticheskikh regulyatorov rosta rastenii (Guidelines for Laboratory Testing of Synthetic Plant Growth Regulators), Shapovalov, A.A., Ed., Cherkassy: NIITEKhIM, 1990.

  80. Strelkov, V.D., Dyadyuchenko, L.V., and Dmitrieva, I.G., Sintez novykh gerbitsidnykh antidotov dlya podsolnechnika (Synthesis of New Herbicidal Antidotes for Sunflower), Krasnodar: Prosveshhenie-Yuug, 2014, p. 79.

  81. Dotsenko, V.V., Krivokolysko, S.G., Polovinko, V.V., and Litvinov, V.P., Chem. Heterocycl. Compd., 2012, vol. 48, no. 2, p. 309. https://doi.org/10.1007/s10593-012-0991-5

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the equipment of the Research Center “Diagnostics of Structure and Properties of Nanomaterials” and the Ecological-Analytical Center of Kuban State University.

Funding

This study was financially supported by the Ministry of Education and Science of RF (project 0795-2020-0031) and North-Caucasus Federal University (interdisciplinary project “Synthesis and Antidote Activity Towards 2,4-D Herbicide of Heterocyclic Derivatives of Methylene-Active Nitriles”) in the scope of the Program for Strategic Academic Leadership PRIORITET -2030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Dotsenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osminin, V.I., Mironenko, A.A., Dahno, P.G. et al. Electrochemical Oxidation of 3-Aryl-2-cyanothioacrylamides. Russ J Gen Chem 92, 2235–2245 (2022). https://doi.org/10.1134/S1070363222110068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222110068

Keywords:

Navigation