Skip to main content
Log in

Impact of H2O–Si(OC2H5)4 and H2O–C2H5OH Molar Ratios in the H2O–Si(OC2H5)4–NH3–C2H5OH Mixtures on Structural and Spectral Features of Synthetic Photonic Crystals Based on SiO2

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Photonic crystals based on amorphous SiO2 nanospheres have been obtained in four-component H2O–Si(OC2H5)4–NH3–EtOH systems at a constant initial volume (100 mL), a constant molar ratio of NH3:Si(OC2H5)4 = 10 : 1, and varied molar ratio of H2O–Si(OC2H5)4 (x1) and H2O–EtOH (x2) within the range of 30–110 and 0.4–2.8, respectively. The increase in water concentration and simultaneous decrease in the alcohol concentration in the initial mixture have resulted in the reduction of mean diameter of the SiO2 spheres from 440 to 270 nm. The curves of the correlation curves between effective diameter of the nanospheres– and the H2O–Si(OC2H5)4 and H2O–EtOH molar ratio have shown two regions with different slopes: for the samples obtained at low H2O–Si(OC2H5)4 and H2O–EtOH molar ratios for these obtained at [H2O] : [Si(OC2H5)4] > 50, [H2O] : [EtOH] > 1. Correlations between the size of the nanospheres of oligomerized SiO2, the initial rate of the process, and the dielectric constant of the initial mixture have been found. The spectral parameters of the photonic crystals obtained on the basis of the amorphous SiO2 spheres have been affected by the H2O–Si(OC2H5)4 and H2O–EtOH molar ratios in the initial mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Yang, L., Pei, C., Shen, A., and Zhao, C., Appl. Phys. Lett., 2014, vol. 104, no. 21, p. 211104. https://doi.org/10.1063/1.4879834

    Article  CAS  Google Scholar 

  2. Hendrickson, J., Soref, R., Sweet, J., and Buchwald, W., Optical Express, 2014, vol. 22, no. 3, p. 3271. https://doi.org/10.1364/OE.22.003271

    Article  CAS  Google Scholar 

  3. Sinatkas, G., Christopoulos, T., Tsilipakos, O., and Kriezis, E., J. Appl. Phys., 2021, vol. 130, p. 010901. https://doi.org/10.1063/5.0048712

    Article  CAS  Google Scholar 

  4. Nassim, D., Mounir, B., and Kahlouche, A., J. Nanoelectronics and Optoelectronics, 2019, vol. 14, no. 8, p. 1189. https://doi.org/10.1166/jno.2019.2647

    Article  CAS  Google Scholar 

  5. Zakharov, A.N., Ganshina, E.A., Perov, N.S., Yurasov, N.I., and Shenkarenko, A.Yu., Inorg. Mater., 2005, vol. 41, p. 1185. https://doi.org/10.1007/s10789-005-0284-9

    Article  CAS  Google Scholar 

  6. Zakharov, A.N., Mayorova, A.F., Mudretsova, S.N., and Perov, N.S., Mendeleev Commun., 2006, vol. 16, no. 2, p. 86. https://doi.org/10.1070/MC2006v016n02ABEH002199

    Article  CAS  Google Scholar 

  7. Zakharov, A.N., Mayorova, A.F., Kovba, M.L., and Bykov, M.A., Russ. J. Phys. Chem., 2010, vol. 84, p. 466. https://doi.org/10.1134/S0036024410030209

    Article  CAS  Google Scholar 

  8. Zakharov, A.N., Maiorova, A.F., Kharlanov, A.N., and Kalmykov, K.B., Russ. J. Phys. Chem., 2011, vol. 85, p. 1679. https://doi.org/10.1134/S0036024411100335

    Article  CAS  Google Scholar 

  9. Qi, D., Wang, X., Cheng, Y., Chen, F., and Liu, L., Gong, R., J. Phys. (D), 2018, vol. 51, no. 22, p. 225103. https://doi.org/10.1088/1361-6463/aabf83

    Article  CAS  Google Scholar 

  10. Butt, M.A., Khonina, S.N., and Kazanskiy, N.L., Optics Laser Technol., 2021, no. 142, p. 107265. https://doi.org/10.1016/j.optlastec.2021.107265

    Article  CAS  Google Scholar 

  11. King, B.H., Gramada, A., Link, J.R., and Sailor, M.J., Adv. Mater., 2007, vol. 19, no. 22, p. 4044. https://doi.org/10.1002/adma.200602860

    Article  CAS  Google Scholar 

  12. Ruminski, A.M., Barillaro, G., Chaffin, C., and Michael, C.J., Adv. Func. Mater., 2011, vol. 21, no. 8, p. 1511. https://doi.org/10.1002/adfm.201002037

    Article  CAS  Google Scholar 

  13. Chen, T.-H., Huang, B.-Y., and Kuo, C.-T., Polymers, 2020, no. 12, p. 802. https://doi.org/10.3390/polym12040802

    Article  CAS  PubMed Central  Google Scholar 

  14. Cai, Y.G., Li, X.Q., Key Eng. Mater., 2018, no. 773, p. 123.

    Article  Google Scholar 

  15. Chen, H., Lou, R., Chen, Y., Chen, L., Lu, J., and Dong, Q., Drug Deliv., 2017, vol. 24, no. 1, p. 775. https://doi.org/10.1080/10717544.2017.1321059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bogush, G.H., Tracy, M.A., and Zukoski, C.F., J. Non-Cryst. Solids, 1988, no. 104, p. 95. https://doi.org/10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  17. Wang, H., Gupta, S.K., Xie, B., and Lu, M., Optoelectron, 2020, vol. 13, no. 1, p. 50. https://doi.org/10.1007/s12200-019-0949-7

    Article  Google Scholar 

  18. Míguez, H., López, C., Meseguer, F., Blanco, A., Vázquez, L., Mayoral, R., Ocaña, M., Fornés, V., and Mifsud, A., Appl. Phys. Lett., 1997, vol. 71, no. 9, p. 1148. https://doi.org/10.1063/1.119849

    Article  Google Scholar 

  19. Liu, Y.J., Cai, Z., Leong, E.S.P., Zhao, X.S., and Teng, J.H., J. Mater. Chem., 2012, no. 22, p. 7609. https://doi.org/10.1039/C2JM16050A

    Article  CAS  Google Scholar 

  20. Hou, K., Ali, W., Lv, J., Guo, J., Shi, L., Han, B., Wang, X., and Tang, Z., J. Am. Chem. Soc., 2018, vol. 140, no. 48, p. 16446. https://doi.org/10.1021/jacs.8b10977

    Article  CAS  PubMed  Google Scholar 

  21. Tabata, S., Isshiki, Y., and Watanabe, M., J. Electrochem. Soc., 2008, vol. 155, no. 3, p. K42. https://doi.org/10.1149/1.2826266

  22. Fathi, F., Rashidi, M.-R., Pakchin, P.S., AhmadiKandjani, S., and Nikniazi, A., Talanta, 2021, no. 221, p. 121615. https://doi.org/10.1016/j.talanta.2020.121615

    Article  CAS  PubMed  Google Scholar 

  23. Waterhouse, G.I.N. and Waterland, M.R., Polyhedron, 2007, no. 26, p. 356. https://doi.org/10.1016/j.poly.2006.06.024

    Article  CAS  Google Scholar 

  24. Wang, L., Wan, Y., Li, Y., Cai, Z., Li, H.-L., Zhao, X.S., and Li, Q., Langmuir, 2009, vol. 25, no. 12, p. 6753. https://doi.org/10.1021/la9002737

    Article  CAS  PubMed  Google Scholar 

  25. Chou, K.-S. and Chen, C.-C., Ceramics Int., 2008, no. 34, p. 1623. https://doi.org/10.1016/j.ceramint.2007.07.009

    Article  CAS  Google Scholar 

  26. Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci., 1968, no. 26, p. 62. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  27. Bogush, G.H. and Zukoski, C.F., J. Colloid Interface Sci., 1991, vol. 12, no. 1, p. 1. https://doi.org/10.1016/0021-9797(91)90029-8

    Article  Google Scholar 

  28. Sinitskii, A.S., Klimovsky, S.O., Garshev, A.V., Primenko, A.E., and Tret’yakov, Yu.D., Mendeleev Commun., 2004, vol. 14, no. 4, p. 165. https://doi.org/10.1070/MC2004v014n04ABEH001968

    Article  CAS  Google Scholar 

  29. Sinitskii, A.S., Knotko, A.V., and Tret’yakov, Yu.D., Inorg. Mater., 2005, vol. 41, no. 11, p. 1178. https://doi.org/10.1007/s10789-005-0283-x

    Article  CAS  Google Scholar 

  30. Akhmadeev, A.A., Sarandaev, E.V., and Salkhov, M.Kh., J. Physics: Conf. Series, 2013, no. 461, p. 012022. https://doi.org/10.1088/1742-6596/461/1/012022

    Article  CAS  Google Scholar 

  31. Huang, C.-L., Coatings, 2020, no. 10, p. 781. https://doi.org/10.3390/coatings10080781

    Article  CAS  Google Scholar 

  32. Lee, B.K., Jung, Y.H., and Kim, D.K., J. Korean Ceram. Soc., 2009, vol. 46, no. 5, p. 472. https://doi.org/10.4191/KCERS.2009.46.5.472

    Article  CAS  Google Scholar 

  33. Thien, N.D., Tu, N.N., Hoa, N.Q., Doanh, S.C., and Vu, L.V., VNU J. Sci.: Math. Phys., 2021, vol. 37, no. 1, p. 68.

    Google Scholar 

  34. Ni, P., Dong, P., Cheng, B., Li, X., and Zhang, D., Adv. Mater., 2001, vol. 13, no. 6, p. 437. https://doi.org/10.1002/1521-4095(200103)13:6%3C437::AID-ADMA437%3E3.0.CO;2-8

    Article  CAS  Google Scholar 

  35. Nagao, D., Nakabayashi, H., Ishii, H., and Konno, M., J. Colloid Interface Sci., 2013, no. 394, p. 63. https://doi.org/10.1016/j.jcis.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Gholami, T., Slavati-Niasari, M., Bazarganipour, M., and Noori, E., Superlatt. Microstruct., 2013, no. 61, p. 33. https://doi.org/10.1016/j.spmi.2013.06.004

    Article  CAS  Google Scholar 

  37. van Helden, A.K., Jansen, W., and Vrij, A., J. Colloid Interface Sci., 1981, vol. 81, no. 2, p. 354. https://doi.org/10.1016/0021-9797(81)90417-3

    Article  CAS  Google Scholar 

  38. Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K., and Makini, K., J. Colloid Interface Sci., 2005, no. 289, p. 125. https://doi.org/10.1016/j.jcis.2005.02.019

    Article  CAS  PubMed  Google Scholar 

  39. Yoo, H.S., Han, J.Y., Kim, S.W., Jeon, D.Y., and Bae, B.S., Optic Express, 2009, vol. 17, no. 5, p. 3732. https://doi.org/10.1364/OE.17.003732

    Article  CAS  Google Scholar 

  40. Liu, L.Y., Wang, X.F., Cheng, B., and Zhang, C.X., J. Braz. Chem. Soc., 2009, vol. 20, no. 1, p. 46. https://doi.org/10.1590/S0103-50532009000100009

    Article  CAS  Google Scholar 

  41. McComb, D.W., Treble, B.M., Smith, C.J., De La Rue, R.M., and Johnson, N.P., J. Mater. Chem., 2001, no. 11, p. 142. https://doi.org/10.1039/B003191G

    Article  CAS  Google Scholar 

  42. Wei, M.-X., Liu, C.-H., Lee, H., Lee, B.-W., Hsu, C.-H., Lin, H.-P., and Wu, Y.-C., Coatings, 2020, vol. 10, no. 7, p. 679. https://doi.org/10.3390/coatings10070679

    Article  CAS  Google Scholar 

  43. Coenen, S. and De Kruif, C.G., J. Colloid Interface Sci., 1988, vol. 124, no. 1, p. 104. https://doi.org/10.1016/0021-9797(88)90330-X

    Article  CAS  Google Scholar 

  44. Míguez, H., Meseguer, F., López, C., Blanco, A., Moya, J.S., Requena, J., Mifsud, A., and Fornés, V., Adv. Mater., 1998, vol. 10, no. 6, p. 480. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6%3C480::AID-ADMA480%3E3.0.CO;2-Y

    Article  PubMed  Google Scholar 

  45. Samarov, E.N., Mokrushin, A.D., Masalov, V.M., Abrosimova, G.E., and Emel’chenko, G.A., Phys. Solid. State, 2006, no. 48, p. 1280. https://doi.org/10.1134/S1063783406070109

    Article  CAS  Google Scholar 

  46. Masalov, V.M., Sukhinina, N.S., Kudrenko, E.A., and Emelchenko, G.A., Nanotechnol., 2011, no. 22, p. 275718. https://doi.org/10.1088/0957-4484/22/27/275718

    Article  CAS  Google Scholar 

  47. Tuyen, L.D., Wu, C.Y., Anh, T.K., Minh, L.Q., Kan, H.-C., and Hsu, C.C., J. Experim. Nanosci., 2012, vol. 7, no. 2, p. , 198. https://doi.org/10.1080/17458080.2010.515249

  48. Giesche, H., J. Eur. Ceram. Soc., 1994, vol. 14, no. 3, p. , 205. https://doi.org/10.1016/0955-2219(94)90088-4

  49. Giesche, H., J. Eur. Ceram. Soc., 1994, vol. 14, no. 3, p. 189. https://doi.org/10.1016/0955-2219(94)90087-6

    Article  CAS  Google Scholar 

  50. Yablonovich, E., J. Am. Chem. Soc. (B), 1993, vol. 10, no. 2, p. 283. https://doi.org/10.1364/JOSAB.10.000283

    Article  Google Scholar 

  51. Rengarajan, R., Jiang, P., Colvin, V., and Mittleman, D., Appl. Phys. Lett., 2000, vol. 77, no. 22, p. 3517. https://doi.org/10.1063/1.1320863

    Article  CAS  Google Scholar 

  52. Liu, K., Schmedake, T.A., and Tsu, R., Phys. Lett. (A), 2008, vol. 372, no. 24, p. 4517. https://doi.org/10.1016/j.physleta.2008.04.008

    Article  CAS  Google Scholar 

  53. Allard, M., Sargent, E.H., Kumacheva, E., and Kalinina, O., Opt. Quant. Electronics, 2002, no. 34, p. 27. https://doi.org/10.1023/A:1013397721552

    Article  CAS  Google Scholar 

  54. Vlasov, Y.A., Astratov, V.N., Baryshev, A.V., Kaplyanskii, A.A., Karimov, O.Z., and Limonov, M.F., Phys. Rev., 2000, vol. 61, no. 5, p. 5784. https://doi.org/10.1103/PhysRevE.61.5784

    Article  CAS  Google Scholar 

  55. Philipse, A.P. and Vrij, A., J. Chem. Phys., 1987, no. 87, p. 5634. https://doi.org/10.1063/1.453536

    Article  CAS  Google Scholar 

  56. Philipse, A.P., Colloid Polym. Sci., 1988, vol. 266, no. 12, p. 1174. https://doi.org/10.1007/BF01414407

    Article  CAS  Google Scholar 

  57. Xia, Y., Gates, B., and Li, Z.-Y., Adv. Mater., 2001, vol. 13, no. 6, p. 409. https://doi.org/10.1002/15214095(200103)13:6%3C409::AID-ADMA409%3E3.0.CO;2-C

    Article  CAS  Google Scholar 

  58. Matsoukas, T. and Gulari, E., J. Colloid Interface Sci., 1988, no. 124, p. 252. https://doi.org/10.1016/0021-9797(88)90346-3

    Article  CAS  Google Scholar 

  59. Matsoukas, T. and Gulari, E., J. Colloid Interface Sci., 1989, no. 132, p. 13. https://doi.org/10.1016/0021-9797(89)90210-5

    Article  CAS  Google Scholar 

  60. Chen, S.L., Dong, P., Yang, G.H., and Yang, J.J., Ind. Eng. Chem. Res., 1996, no. 35, p. 4487. https://doi.org/10.1021/ie9602217

    Article  CAS  Google Scholar 

  61. Chen, S.L., Dong, P., Yang, G.H., and Yang, J.J., J. Colloid Interface Sci., 1996, no. 180, p. 237. https://doi.org/10.1006/jcis.1996.0295

    Article  CAS  Google Scholar 

  62. Chou, K.-S. and Chen, C.-C., Adv. Technol. Mater. Proc. J., 2003, no. 5, p. 31.

    CAS  Google Scholar 

  63. Tan, C.G. and Bowen, B.D., Epstein, N., J. Colloid Interface Sci., 1987, no. 118, p. 290. https://doi.org/10.1016/0021-9797(87)90458-9

    Article  CAS  Google Scholar 

  64. Kim, K.D. and Kim, H.T., J. Am. Ceram. Soc., 2002, vol. 85, no. 5, p. 1107. https://doi.org/10.1111/j.1151-2916.2002.tb00230.x

    Article  CAS  Google Scholar 

  65. van Blaaderen, A., van Geest, J., and Vrij, A., J. Colloid Interface Sci.1992, vol. 154, no. 2, p. 481. https://doi.org/10.1016/0021-9797(92)90163-G

  66. Zhang, J.H., Zhan, P., Wang, Z.L., Zhang, W.Y., and Ming, N.B., J. Mater. Res., 2003, vol. 18, no. 3, p. 649. https://doi.org/10.1557/JMR.2003.0085

    Article  CAS  Google Scholar 

  67. Yurasova, I.I., Yurasov, N.I., Plokhikh, A.I., Galkin, N.K., Sinyagin, A.V., and Tetyanchuk, V.A., J. Phys. Chem. (A), 2021, vol. 95, no. 6, p. 1207. https://doi.org/10.1134/S0036024421060297

    Article  CAS  Google Scholar 

  68. Lai, C.-F. and Li, J.-S., Optical Mater., 2019, no. 88, p. 128. https://doi.org/10.1016/j.optmat.2018.11.020

    Article  CAS  Google Scholar 

  69. LaMer, V.K. and Dinegar, R.H., J. Am. Chem. Soc., 1950 Vol. 72, no. 11, p. 4847. https://doi.org/10.1021/ja01167a001

    Article  Google Scholar 

  70. Gorelik, V.S., Yurasov, N.I., Gryaznov, V.V., Voinov, Yu.P, Sverbil, P.P., and Samoilovich, M.I., Inorg. Mater., 2009, vol. 45, p. 1013. https://doi.org/10.1134/S0020168509090131

    Article  CAS  Google Scholar 

  71. Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., Mattarelli, M., Montagna, M., Moser, E., Conti, G.N., Pelli, S., Righini, G.C., Gonçalves, M.C., and Almeida, R.M., J. Non-Cryst. Solids, 2007, vol. 353, p. 674. https://doi.org/10.1016/j.jnoncrysol.2006.10.034

    Article  CAS  Google Scholar 

  72. Karpov, I.A., Samarov, E.N., Masalov, V.M., Bozhko, S.I., and Emelchenko, G.A., Physics Solid State, 2005, vol. 47, p. 347. https://doi.org/10.1134/1.1866417

    Article  CAS  Google Scholar 

  73. Nemtsev, I.V., Tambasov, I.A., Ivanenko, A.A., and Zyryanov, V.Y., Photonics and Nanostructures Fundamentals and Applications, 2018, no. 28. 37. https://doi.org/10.1016/j.photonics.2017.11.007

  74. Jiang, Q., Li, C., Shi, S., Zhao, D., Xiong, L., Wei, H., and Yi, L., J. Non Cryst. Solids, 2012, vol. 358, nos. 12–13, p. 1611. https://doi.org/10.1016/j.jnoncrysol.2012.04.024

    Article  CAS  Google Scholar 

  75. Bertolini, D., Cassettari, M., and Salvetti, G., J. Chem. Phys., 1983, no. 78, p. 365. https://doi.org/10.1063/1.444510

    Article  CAS  Google Scholar 

  76. Sergeev, V.A., Mikhailov, A.I., Koronevskii, N.V., Sergeev, R.S., Zykov, K.A., and Sergeeva, B.V., Elektron. Mikroelektron SVCh, 2018, vol. 1, p. 515.

    Google Scholar 

  77. Rabinovich, V.A., Xavin, Z.Ya., Brief Chemical Reference, London: Publishing House, Chemistry, 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Yurasova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurasova, I.I., Yurasov, N.I., Galkin, N.K. et al. Impact of H2O–Si(OC2H5)4 and H2O–C2H5OH Molar Ratios in the H2O–Si(OC2H5)4–NH3–C2H5OH Mixtures on Structural and Spectral Features of Synthetic Photonic Crystals Based on SiO2. Russ J Gen Chem 92, 2005–2015 (2022). https://doi.org/10.1134/S1070363222100140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100140

Keywords:

Navigation