Skip to main content
Log in

Synthesis and Antimicrobial Activity Evaluation of Ammonium Acylhydrazones Based on 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The condensation reaction of 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde with some ammonium acetohydrazides yielded water-soluble acylhydrazones with different structures of the cationic center. It was shown that in relation to Staphylococcus aureus, Bacillus cereus and Enterococcus faecalis, trimethylammonium chloride derivative exhibits activity at or above the level of comparison drugs, norfloxacin and chloramphenicol, respectively. The resulting compounds do not have a toxic effect on erythrocytes and normal human liver cells. The high activity of diethylmethylammonium acylhydrazone against the formation of biofilms formed by clinical staphylococci strains was shown for the first time. The high efficiency of new compounds in inhibiting the growth of phytopathogens of bacterial and fungal origin was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Viegas-Junior, C., Danuello, A., da Silva Bolzani, V., Barreiro, E.J., and Fraga, C.A.M., Curr. Med. Chem., 2007, vol. 14, p. 1829. https://doi.org/10.2174/092986707781058805

    Article  CAS  PubMed  Google Scholar 

  2. Berube, G., Expert Opin. Drug Discov., 2016, vol. 11, p. 281. https://doi.org/10.1517/17460441.2016.1135125

    Article  CAS  PubMed  Google Scholar 

  3. Kumar, H.M.S., Herrmann, L., and Tsogoeva, S.B., Bioorg. Med. Chem. Lett., 2020, vol. 30, p. 127514. https://doi.org/10.1016/j.bmcl.2020.127514

    Article  CAS  Google Scholar 

  4. Design of Hybrid Molecules for Drug Development, Decker, M., Ed., Amsterdam: Elsevier, 2017.

  5. Kataev, V.E., Strobykina, I.Yu., and Zakharova, L.Ya., Russ. Chem. Bull., 2014, vol. 63, p. 1884. https://doi.org/10.1007/s11172-014-0680-x

    Article  CAS  Google Scholar 

  6. Osimitz, Th.G. and Droege, W., Toxicology Res. Appl., 2021, vol. 5, p. 1. https://doi.org/10.1177/23978473211049085

    Article  CAS  Google Scholar 

  7. Padrtova, T., Marvanova, P., Odehnalova, K., Kubinova, R., Parravicini, O., Garro, A., Enriz, R.D., Humpa, O., Oravec, M., and Mokry, P., Molecules, 2017, vol. 22, p. 2048. https://doi.org/10.3390/molecules22122048

    Article  CAS  PubMed Central  Google Scholar 

  8. Nair, V.P. and Hunter, J.M., Continuing Educ. Anaesth. Critical Care Pain., 2004, vol. 4, p. 164. https://doi.org/10.1093/bjaceaccp/mkh045

    Article  Google Scholar 

  9. Conejo-Garcia, A., Pisani, L., Del Carmen Nunez, M., Catto, M., Nicolotti, O., Leonetti, F., Campos, J.M., Gallo, M.A., Espinosa, A., and Carotti, A., J. Med. Chem., 2011, vol. 54, p. 2627. https://doi.org/10.1021/jm101299d

    Article  CAS  PubMed  Google Scholar 

  10. Skrzypczak, N., Pyta, K., Ruszkowski, P., Mikolajczak, P., Kucinska, M., Murias, M., Gdaniec, M., Bartl, F., and Przybylski, P., J. Enzyme Inhibit. Med. Chem., 2021, vol. 36, p. 1898. https://doi.org/10.1080/14756366.2021.1960829

    Article  CAS  Google Scholar 

  11. Yang, J.S., Song, D., Ko, W.J., Kim, B., Kim, B.-K., Park, S.-K., Won, M., Lee, K., Lee, K., Kim, H.M., and Han, G., Eur. J. Med. Chem., 2013, vol. 63, p. 621. https://doi.org/10.1016/j.ejmech.2012.12.063

    Article  CAS  PubMed  Google Scholar 

  12. Basilico, N., Migotto, M., Ilboudo, D.P., Taramelli, D., Stradi, R., and Pini, E., Bioorg. Med. Chem., 2015, vol. 23, p. 4681. https://doi.org/10.1016/j.bmc.2015.05.055

    Article  CAS  PubMed  Google Scholar 

  13. Baker, N., Williams, A.J., Tropsha, A., and Ekins, S., Pharm. Res., 2020, vol. 37, p. 104. https://doi.org/10.1007/s11095-020-02842-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panunzio, M., Malabarba, A., and Vicennati, P., Arkivoc, 2004, vol. 13, p. 36. https://doi.org/10.3998/ark.5550190.0005.d05

    Article  Google Scholar 

  15. Jennings, M.C., Minbiole, K.P.C., and Wuest, W.M., ACS Infect. Dis., 2015, vol. 1, p. 288. https://doi.org/10.1021/acsinfecdis.5b00047

    Article  CAS  PubMed  Google Scholar 

  16. Hegstad, K., Langsrud, S., Lunestad, B.T., Scheie, A.A., Sunde, M., and Yazdankhah, S.P., Microb. Drug Resist., 2010, vol. 16, p. 91. https://doi.org/10.1089/mdr.2009.0120

    Article  CAS  PubMed  Google Scholar 

  17. Sapozhnikov, S.V., Shtyrlin, N.V., Kayumov, A.R., Zamaldinova, A.E., Iksanova, A.G., Nikitina, Е.V., Krylova, Е.S., Grishaev, D.Yu., Balakin, K.V., and Shtyrlin, Yu.G., Med. Chem. Res., 2017, vol. 26, p. 3188. https://doi.org/10.1007/s00044-017-2012-9

    Article  CAS  Google Scholar 

  18. Vereshchagin, A.N., Frolov, N.A., Egorova, K.S., Seitkalieva, M.M., and Ananikov, V.P., Int. J. Mol. Sci., 2021, vol. 22, p. 6793. https://doi.org/10.3390/ijms22136793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knauf, G.A., Cunningham, A.L., Kazi, M.I., Riddington, I.M., Crofts, A.A., Cattoir, V., Trent, M.S., and Davies, B.W., mBio, 2018, vol. 9, p. e02394-17. https://doi.org/10.1128/mBio.02394-17

  20. Chauret, C.P., Encycl. Food Microbiol., 2014, vol. 3, p. 360. https://doi.org/10.1016/B978-0-12-384730-0.00407-9

    Article  Google Scholar 

  21. Kwasniewska, D., Chen, Y.-L., and Wieczorek, D., Pathogens, 2020, vol. 9, p. 459. https://doi.org/10.3390/pathogens9060459

    Article  CAS  PubMed Central  Google Scholar 

  22. Xu, Q., Hu, X., and Wang, Y., Molecular Biotechnol., 2021, vol. 63, p. 1103. https://doi.org/10.1007/s12033-021-00371-2

    Article  CAS  Google Scholar 

  23. Druvari, D., Koromilas, N.D., Bekiari, V., Bokias, G., and Kallitsis, J.K., Coatings, 2018, vol. 8, p. 8. https://doi.org/10.3390/coatings8010008

    Article  CAS  Google Scholar 

  24. Jiao, Y., Niu, L., Ma, S., Li, J., Tay, F.R., and Chen, J., Progr. Polym. Sci., 2017, vol. 71, p. 53. https://doi.org/10.1016/j.progpolymsci.2017.03.001

    Article  CAS  Google Scholar 

  25. Xue, Y., Xiao, H., and Zhang, Y., Int. J. Mol. Sci., 2015, vol. 16, p. 3626. https://doi.org/10.3390/ijms16023626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hrubec, T.C., Seguin, R.P., Xu, L., Cortopassi, G.A., Datta, S., Hanlon, A.L., Lozano, A.J., McDonald, V.A., Healy, C.A., Anderson, T.C., Musse, N.A., and Williams, R.T., Toxicology Rep., 2021, vol. 8, p. 646. https://doi.org/10.1016/j.toxrep.2021.03.006

    Article  CAS  Google Scholar 

  27. Di Nica, V., Gallet, J., Villa, S., and Mezzanotte, V., Ecotoxicol. Environ. Safety, 2017, vol. 142, p. 567. https://doi.org/10.1016/j.ecoenv.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  28. Ogata, M., Tutumimoto Sato, K., Kunikane, T., Oka, K., Seki, M., Urano, Sh., Hiramatsu, K., and Endo, T., Biol. Pharm. Bull., 2005, vol. 28, p. 1120. https://doi.org/10.1248/bpb.28.1773

    Article  CAS  PubMed  Google Scholar 

  29. Selassie, C.D., Verma, R.P., Kapur, S., Shusterman, A.J., and Hansch, C., J. Chem. Soc. Perkin Trans. 2, 2002, p. 1112. https://doi.org/10.1039/b201478e

  30. Starodubtseva, R.R., Gibadullina, E.M., Pazilova, N.B., Sapunova, A.S., Voloshina, A.D., Sudakov, I.A., Vyshtakalyuk, A.B., Pudovik, M.A., Burilov, A.R., and Bukharov, S.V., Med. Chem. Commun., 2018, vol. 9, p. 2106. https://doi.org/10.1039/c8md00481a

    Article  CAS  Google Scholar 

  31. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., and Mironov, V.F., Russ. J. Gen. Chem., 2018, vol. 88, p. 57. https://doi.org/10.1134/S1070363218010097

    Article  CAS  Google Scholar 

  32. Bogdanov, A.V., Iskhakova, K.R., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Terekhova, N.V., Arsenyev, M.V., Ziyatdinova, G.K., and Bukharov, S.V., Chem. Biodivers., 2020, vol. 17. e2000147. https://doi.org/10.1002/cbdv.202000147

  33. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Strobykina, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Khamatgalimov, A.R., and Mironov, V.F., Monatsh. Chem., 2018, vol. 149, p. 111. https://doi.org/10.1007/s00706-017-2049-y

    Article  CAS  Google Scholar 

  34. Bogdanov, A.V., Zaripova, I.F., Voloshina, A.D., Sapunova, A.S., Kulik, N.V., Bukharov, S.V., Voronina, Ju.K., Vandyukov, A.E., and Mironov, V.F., ChemistrySelect, 2019, vol. 4, p. 6162. https://doi.org/10.1002/slct.201901708

    Article  CAS  Google Scholar 

  35. Bogdanov, A.V., Kadomtseva, M.E., Bukharov, S.V., Voloshina, A.D., and Mironov, V.F., Russ. J. Org. Chem., 2020, vol. 56, p. 555. https://doi.org/10.1134/S107042802003032X

    Article  CAS  Google Scholar 

  36. Bogdanov, A.V., Voloshina, A.D., Khamatgalimov, A.R., Terekhova, N.V., and Mironov, V.F., Doklady Chem., 2020, vol. 494, no. 1, p. 136. https://doi.org/10.1134/S0012500820090013

    Article  CAS  Google Scholar 

  37. Syakaev, V.V., Podyachev, S.N., Buzykin, B.I., Latypov, Sh.K., Habicher, V.D., and Konovalov, A.I., J. Mol. Struct., 2006, vol. 788, p. 55. https://doi.org/10.1016/j.molstruc.2005.11.018

    Article  CAS  Google Scholar 

  38. Arsenyev, M.V., Baranov, E.V., Fedorov, A.Yu., Chesnokov, S.A., and Abakumov, G.A., Mendeleev Commun., 2015, vol. 25, p. 312. https://doi.org/10.1016/j.mencom.2015.07.029

    Article  CAS  Google Scholar 

  39. Arsenyev, M.V., Khamaletdinova, N.M., Baranov, E.V., Chesnokov, S.A., and Cherkasov, V.K., Russ. Chem. Bull., 2016, vol. 65, p. 1805. https://doi.org/10.1007/s11172-016-1514-9

    Article  CAS  Google Scholar 

  40. Levison, L.J., Miller-Cushon, E.K., Tucker, A.L., Bergeron, R., Leslie, K.E., Barkema, H.W., and De Vries, T.J., J. Dairy Sci., 2016, vol. 99, p. 1341. https://doi.org/10.3168/jds.2015-9809

    Article  CAS  PubMed  Google Scholar 

  41. Vakkamаki, J., Taponen, S., Heikkila, A.-M., and Pyorala, S., Acta Vet. Scand., 2017, vol. 59, p. 33. https://doi.org/10.1186/s13028-017-0301-4

    Article  Google Scholar 

  42. Verbeke, J., Piepers, S., Supre, K., and De Vliegher, S., J. Dairy Sci., 2014, vol. 97, p. 6926. https://doi.org/10.3168/jds.2014-8173

    Article  CAS  PubMed  Google Scholar 

  43. Pyorala, S. and Taponen, S., Vet. Microbiol., 2009, vol. 134, p. 3. https://doi.org/10.1016/j.vetmic.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  44. Simojoki, H., Salomaki, T., Taponen, S., Iivanainen, A., and Pyorala, S., Vet. Res., 2011, vol. 42, p. 49. https://doi.org/10.1186/1297-9716-42-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Felipe, V., Breser, M. L., Bohl, L.P., Rodrigues da Silva, E., Morgante, C.A., Correa, S.G., and Porporatto, C., Int. J. Biol. Macromol., 2019, vol. 126, p. 60. https://doi.org/10.1016/j.ijbiomac.2018.12.159

    Article  CAS  PubMed  Google Scholar 

  46. Bogdanov, A., Tsivileva, O., Voloshina, A., Lyubina, A., Amerhanova, S., Burtceva, E., Bukharov, S., Samorodov, A., and Pavlov, V., ADMET & DMPK, 2022, vol. 10, p. 163. https://doi.org/10.5599/admet.1179

    Article  Google Scholar 

  47. Wang, T., Gao, C., Cheng, Y., Li, Z., Chen, J., Guo, L., and Xu, J., Plants, 2020, vol. 9, p. 769. https://doi.org/10.3390/plants9060769

    Article  CAS  PubMed Central  Google Scholar 

  48. Mastanjevic, K., Krstanovic, V., Mastanjevic, K., and Sarkanj, B., Fermentation, 2018, vol. 4, p. 3. https://doi.org/10.3390/fermentation4010003

    Article  CAS  Google Scholar 

  49. Han, J.-H., Park, G.-C., and Kim, K.S., Mycobiology, 2017, vol. 45, p. 370. https://doi.org/10.5941/MYCO.2017.45.4.370

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lim, B., Cheng, Y., Kato, T., Pham, A.T., Le Du, E., Mishra, A.K., Grinhagena, E., Moreau, D., Sakai, N., Waser, J., and Matile, S., Helv. Chim. Acta, 2021, vol. 104. e2100085. https://doi.org/10.1002/hlca.202100085

  51. Abd-El-Khair, H., Abdel-Gaied, T.G., Mikhail, M.S., Abdel-Alim, A.I., and El-Nasr, H.I.S., Bull. Nat. Res. Centre, 2021, vol. 45, p. 37. https://doi.org/10.1186/s42269-021-00491-4

    Article  Google Scholar 

  52. Huang, X., Ren, J., Li, P., Feng, S., Dong, P., and Ren, M., J. Sci. Food Agric., 2021, vol. 101, p. 1744. https://doi.org/10.1002/jsfa.10829

    Article  CAS  PubMed  Google Scholar 

  53. Ragasova, L., Penazova, E., Gazdik, F., Pecenka, J., Cechova, J., Pokluda, R., Baranek, M., Grzebelus, D., and Eichmeier, A., Agronomy, 2020, vol. 10, p. 443. https://doi.org/10.3390/agronomy10030443

    Article  CAS  Google Scholar 

  54. Davidson, C.M. and Cronin, F., Appl. Microbiol., 1973, vol. 26, p. 439. https://doi.org/10.1128/am.26.3.439-440.1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McCoy, R.H. and Pilcher, K.S., J. Fish. Board Canada, 1974, vol. 31, p. 1553. https://doi.org/10.1139/f74-193

    Article  CAS  Google Scholar 

  56. Essenberg, M., Doherty, M.D.A., Hamilton, B.K., Henning, V.T., Cover, E.C., McFaul, S.J., and Johnson, W.M., Phytopathology, 1982, vol. 72, p. 1349. https://doi.org/10.1094/Phyto-72-1349

    Article  CAS  Google Scholar 

  57. Ming, D., Ye, H., Schaad, N.W., and Roth, D.A., Phytopathology, 1991, vol. 81, p. 1358. https://doi.org/10.1094/Phyto-81-1358

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Spectro-Analytical Center of the Kazan Scientific Center of the Russian Academy of Sciences for the technical support of the research.

Funding

The work was supported by the Strategic Academic Leadership Program of the Kazan (Volga Region) Federal University (Prioritet-2030). The study of antiphytopathogenic activity was carried out within the framework of the Program of Fundamental Scientific Research of the Russian Academy of Sciences (subject No. 121031100266-3, O.M. Tsivileva).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bogdanov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

To Memory of V.I. Galkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanov, A.V., Bukharov, S.V., Garifullina, R.A. et al. Synthesis and Antimicrobial Activity Evaluation of Ammonium Acylhydrazones Based on 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde. Russ J Gen Chem 92, 1875–1886 (2022). https://doi.org/10.1134/S1070363222100012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222100012

Keywords:

Navigation