Skip to main content
Log in

Study on the Preparation Technology of Omeprazole Vesicles

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Herein a study on the process of converting omeprazole into omeprazole vesicles by a film dispersion method is presented. Using encapsulation efficiency as an index, the formulation and technology of omeprazole vesicles are optimized by a single factor experiment and a central composite design-response surface method. The optimized formulation and technology are as follows: the ratio of Tween-80 to cholesterol is 3 : 1, the hydration time is 65 min, the hydration temperature is 30°C, and hydration solvent pH is 11. Under such conditions, the average particle diameter of the obtained the omeprazole vesicles is 70 nm, and the encapsulation efficiency is 92.40%, which is close to the theoretical value of 93.43%. Transmission electron microscope (TEM) characterization reveals that the omeprazole vesicles are of regular spherical shape, and IR and TG characterization demonstrate that omeprazole has been encapsulated by the vesicles. The release time of pure omeprazole drug in simulated human intestinal fluid (pH = 6.8) is about 70 min, and the release time of omeprazole vesicles is ca 75 min, with a release rate of 33.19%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Handjani-Vila, R.M., Ribier, A., Rondot, B., and Vanlerberghie, G., Int. J. Cosmetic Sci., 1979, vol. 1, p. 303. https://doi.org/10.1111/j.1467-2494.1979.tb00224.x

  2. Gopinath, D., Ravi, D., Rao, B.R., Apte, S.S., Renuka, D., and Rambhau, D., Int. J. Pharmaceut., 2004, vol. 271, p. 95. https://doi.org/10.1016/j.ijpharm.2003.10.032

    Article  CAS  Google Scholar 

  3. Hong, J.D., M. Sci. Thesis, South China University of Technology, China, 2019.

  4. Bragagni, M., Mennini, N., Furlanetto, S., Orlandini, S., and Mura, P., Eur. J. Pharm. Biopharm., 2014, vol. 87, p. 73. https://doi.org/10.1016/j.ejpb.2014.01.006

  5. Didem, A.S., Muharrem, S., Johanna-Gabriela, W., Frank, S., and Thomas, S., J. Nanomater., 2016, article ID 7372306. https://doi.org/10.1155/2016/7372306

  6. Le Meins, J.-F., Sandre, O., and Lecommandoux, S., Eur. Phys. J. E., 2011, vol. 34, p. 14. https://doi.org/10.1140/epje/i2011-11014-y

  7. Kaler, E.W., Murthy, A.K., Rodriguez, B.E., and Zasadzinski, J.A.N., Science, 1989, vol. 245, p. 1371.

  8. Ma, J., M. Sci. Thesis, Jiang Nan University, China, 2015.

  9. Overmoyer, B., Silverman, P., Holder, L.W., Tripathy, D., and Henderson, I.C., Clin. Breast Cancer, 2006, vol. 6, p. 150. https://doi.org/10.3816/CBC.2005.n.017

    Article  Google Scholar 

  10. Cheng, J.Y., Huang, H.N., Tseng, W.C., Li, T.L., Chan, Y.L., and Cheng, K.C., J. Control. Release., 2009, vol. 135, p. 242. https://doi.org/10.1016/j.jconrel.2009.01.014

  11. Olsen, K.M., Bergman, K.L., Kaufman, S.S., Rebuck, J.A., and Collier, D.S., Pediatr. Crit. Care. Med., 2001, vol. 2, p. 232. https://doi.org/10.1097/00130478-200107000-00008

    Article  CAS  PubMed  Google Scholar 

  12. Larsson, H., Mattson, H., Sundell, G., and Carlsson, E., Scand. J. Gastroenter., 1985, vol. 20, p. 23. https://doi.org/10.3109/00365528509095817

    Article  Google Scholar 

  13. Katashima, M., Yamamoto, K., Tokuma, Y., Hata T., Sawada, Y., and Iga, T., Eur. J. Drug. Metab. Ph. 1998, vol. 23, p. 19. https://doi.org/10.1007/BF03189822

  14. Barth, J., and Hahne, W., Aliment. Pham. Ther., 2015, vol.16, p. 31. https://doi.org/10.1046/j.1365-2036.2002.0160s1031.x

  15. Abraham, N.S., Curr. Opin. Gastroen., 2012, vol. 28, p. 615. https://doi.org/10.1097/MOG.0b013e328358d5b9

  16. Reenstra, W.W., Bettencourt, J.D., and Forte, J.G., Am. J. Physiol., 1986, vol. 250, p. 455. https://doi.org/10.1152/ajpgi.1986.250.4.G455

    Article  Google Scholar 

  17. Guan, Y.B., Han, B., Tian, Y.D., Jia, Y.Y., and Sun, Y.J., Chin. Med. Mater., 2019, vol. 42, p. 385. https://doi.org/10.13863/j.issn1001-4454.2019.02.032

    Article  Google Scholar 

  18. Wang, X.X., M. Sci. Thesis, Qingdao University of Science and Technology, China, 2017.

  19. Zheng, C.J., Li, S.S., and Chen, Q., Fine Chem., 2020, vol. 37, p. 2482. https://doi.org/10.13550/j.jxhg.20200656

    Article  CAS  Google Scholar 

  20. Xu, D.Q., Liu, X.H., Sun, S.M., Jin, C.C., Yi, J., Wang, X.Y., and Guo, B.H., Lishizhen Med. Mater. Med. Res., 2017, vol. 28, p. 600.

    Google Scholar 

  21. Mansaray, K.G. and Ghaly, A.E., Biomass Bioenerg., 1999, vol. 17, p. 19. https://doi.org/10.1016/S0961-9534(99)00022-7

    Article  CAS  Google Scholar 

  22. Tu, X.Y., M. Sci. Thesis, Guizhou University, China, 2019.

  23. Li, S.S., M. Sci. Thesis, Guizhou University, China, 2020.

  24. Chen, X.H., Zhang, Q.Z., Chen, J., and Zhang, W.H., J. Light Scattering, 2009, vol. 21, p. 325. https://doi.org/10.13883/j.issn1004-5929.2009.04.016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Chen or Carl Redshaw.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Wang, Z., Zhang, Y. et al. Study on the Preparation Technology of Omeprazole Vesicles. Russ J Gen Chem 91, 2311–2319 (2021). https://doi.org/10.1134/S1070363221110190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221110190

Keywords:

Navigation